
Efficient Imbalanced Multimedia Concept
Retrieval by Deep Learning

on Spark Clusters

Yilin Yan1, Min Chen2, Muhammad Saad Sadiq1, Mei-Ling Shyu1,*

1Department of Electrical and Computer Engineering

University of Miami, Coral Gables, FL 33146, USA

2Computing and Software Systems

University of Washington Bothell, Bothell, WA 98011, USA

Emails: y.yan4@umiami.edu, minchen2@uw.edu, saadsadiq@miami.edu,

shyu@miami.edu

ABSTRACT

The classification of imbalanced datasets has recently attracted significant attention due to its

implications in several real-world use cases. In such scenarios, the datasets have skewed class

distributions while very few data instances are associated with certain classes. The classifiers

developed on such datasets tend to favor the majority classes and are biased against the minority

class. Despite extensive research interests, imbalanced data classification still remains a challenge in

data mining research, especially for multimedia data. Our attempt to overcome this hurdle is to

develop a convolutional neural network (CNN) based deep learning solution integrated with a

bootstrapping technique. Considering the fact that convolutional neural networks are very

computationally expensive coupled with big training datasets, we propose to extract features from

pre-trained convolutional neural network models and feed those features to another full connected

neutral network. Spark implementation shows promising performance of our model in handling big

datasets with respect to feasibility and scalability.

Keywords: classification, deep learning, imbalanced data, semantic indexing, convolutional neural

network (CNN), Apache Spark

Introduction

Skewness in data classes poses a significant challenge in major research problems pertaining to data

mining and machine learning (Chen & Shyu, 2013; Chen & Shyu, 2011; Lin, Ravitz, Shyu, & Chen,

2007). Classes are rated as skewed or imbalanced when their data instances are non-uniformly

associated to the class label. In real world cases, most applications have some degree of skewness

inherently present in the data. Such datasets are often grouped into major and minor classes, where

major classes have significantly greater numbers of instances associated with them as compared to

minor classes. Some prominent imbalanced dataset use cases include fraud detection, network

intrusion identification, uncommon disease diagnostics, critical equipment failure, and multimedia

concept sensing. A number of famous classification methods are built to utilize the dataset statistics,

which ends up being biased towards the majority classes. When identifying the minor classes, these

classifiers often perform inaccurately even for very large datasets with considerable numbers of

training instances.

Some notable frameworks aiming to solve this challenge are proposed in (Shyu, Haruechaiyasak, &

Chen, 2003; Lin, Chen, Shyu, & Chen, 2011; Meng, Liu, Shyu, Yan, & Shu, 2014; Shyu, et al., 2003;

Liu, Yan, Shyu, Zhao, & Chen, 2015; Yan, Chen, Shyu, & Chen, 2015). The authors of these

frameworks, along with others, target this issue from two different perspectives. The first type is

algorithm-based approaches where the authors propose new frameworks or improve the existing

methods using both supervised and unsupervised techniques. The second, very different type is

towards the manipulation of the data itself to reduce the skewness in the class attribution. However,

the problem of imbalanced classes is far from being conquered, especially in multimedia data.

Multimedia data is particularly difficult because of the various data types that are layered with spatio-

temporal features.

One path to handle this challenging situation would be to employ solutions from other domains of

machine learning such as deep learning. Deep learning is the name of a whole family of algorithms

that use graphs with multiple layers of linear and non-linear transformations to develop hierarchical

learning models (Wan et al., 2014). Several frameworks have been proposed using the deep learning

techniques that show promising results in application domains such as automatic speech recognition

(Swietojanski, Ghoshal, & Renals, 2014), computer vision (Chen, Xiang, Liu, & Pan, 2014), and

natural language processing (Mao, Dong, Huang, & Zhan, 2014). However, deep learning methods

have not been used to address the problems of class-imbalance. As illustrated in Section IV of our

empirical study and also presented in (Sun et al., 2013; Snoekyz et al., 2013) on the TRECVID 2015

datasets, even the famous deep learning methods such as convolutional neural network (CNN) which

outperforms a multitude of conventional machine learning techniques face difficulties when dealing

with the class-imbalance problems. Moreover, for big datasets in multimedia data mining, deep

learning methods are very expensive on computations. The method proposed in (Karpathy et al.,

2014) took more than 30 days to train with 1755 videos. The authors were only able to successfully

train the deep learning framework using a near-duplicate algorithm.

Toward such demands, our method is proposed to improve the TRECVID dataset confidence scores

by a CNN based deep learning framework. In addition, a big data deep learning approach coupled

with a bootstrapping sampling technique is proposed to create a balanced set of batches using the

training dataset. To the best of our knowledge, bootstrapping has not been used with the deep learning

frameworks. To further facilitate the capability of handling the class imbalance problem in big

datasets, a distributed computation framework using Apache Spark is also implemented to bind the

novel qualities of CNN with the bootstrapping procedures. The proposed framework has shown to be

highly impressive and comparatively economical in classifying highly skewed multimedia datasets.

The Spark-based distributed computing capability enables a scalable architecture that can mine

unstructured key-value confidence scores of multimedia data.

The remaining of the article is organized in the following manner. The following section discusses the

related work in skewed data classification methods, followed by some recent progresses in deep

learning. Our proposed framework is introduced in the Framework section with its performance

evaluated using the experimental results in the next section. The last section concludes the findings

and develops the direction for future research.

Related work on classification for class-imbalance datasets

As mentioned in the previous section, class-imbalanced data classification methods can be sorted into

two categories, namely the algorithm techniques and the data manipulation techniques. The first type

of approaches, i.e., the algorithm based techniques, either propose to build new or improve existing

algorithms to attain superior classification of imbalanced datasets. Consider the cost-sensitive

learning methods as an example, where the method maximizes the cost functions of the data to

increase the accuracy of class prediction. The intention behind these frameworks is that practical

applications do not treat misclassified instances equally. These methods typically evaluate a cost

matrix and utilize it in training the model. A relevant approach to cost-sensitive training is to modify

the bias to give an advantage to the minority class (Unsworth & Coghill, 2006). Some frameworks

using this approach do show the likelihood of improving the classification accuracy, but they are

restricted to few application domains.

The second type of approaches that directly manipulate the data also have some notable frameworks.

The methods of oversampling and downsampling the data are noteworthy to mention here (Yan, Liu,

Shyu, & Chen, 2014). There are numerous implementations of these sampling based frameworks

where the authors argue against whether oversampling has a better outcome than downsampling

(Batista, Prati, & Monard, 2004). Oversampling methods reproduce duplicate or near duplicate

positive data instances to balance out the dataset. Zhang et al. proposed a notable oversampling

technique (Zhang & Wang, 2011; Chawla, Bowyer, Hall, & Kegelmeyer, 2002) but this method is

potentially prone to overfitting. Alternatively, downsampling chooses from the pool of negative data

instances to develop a model with a similar number of positive instances. There is an obvious

advantage when only a subset of the majority class is used, but this also results in the loss of

information because several critical instances may be ignored. Liu et al. came up with two methods to

remove this disadvantage (Liu, Wu, & Zhou, 2009). The first one is called “Easy Ensemble” that

samples various subsets within the majority class and the model is set to learn from each of these

subsets. The output classification is an ensemble of these intermediate models. The second method is

the “Balance Cascade” technique where the model learns in sequences. In each sequence, the

accurately classified samples are removed from the next sequence.

Recent work on deep learning

With famous successful stories such as the Google AlphaGo platform (AlphaGo website), deep

learning networks have proven to have a significant impact in a variety of research domains. It was

originally evolved from the concept of artificial neural networks (ANNs), but is capable of achieving

much higher performance metrics than some existing competing machine learning methods. Several

deep learning methods have sprouted from the initial ANN concepts such as the deep belief network

(DBN), restricted Boltzman machine (RBM), deep neural network (DNN), and many others (Wan et

al., 2014). One of the promising off-shoots of the Deep Neural Networks approaches is called the

convolutional neural network (CNN) (Swietojanski, Ghoshal, & Renals, 2014; Chen, Xiang, Liu, &

Pan, 2014; Mao, Dong, Huang, & Zhan, 2014; Ji, Xu, Yang, & Yu, 2013; Jin, Fu & Zhang, 2014).

CNN is a discriminatory deep learning architecture that has gained much popularity in computer

vision and object recognition. CNN is composed of modules and each module is mainly made up of

two layers, namely the convolutional layer and the pooling layer. The convolutional layer shares

many weights and passes its output to the pooling layer, and the pooling layer then subsamples the

output and effectively cuts down the data rate. Although CNNs are the preferred choice in various

domains, they have yet to challenge the class-imbalance problem. Therefore, in this paper, we

implement CNNs on a highly class imbalanced dataset and strive to improve the performance over the

conventional state-of-the-art methods.

Since AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) won the top-5 test error rate in the ILSVRC

2012 contest on ImageNet, CNN is proven to suppress the traditional ensemble framework with

classical features like sparse SIFT and pyramid pooling. Correspondingly, a deep and large CNN was

trained to classify more than one million high-resolution images in the ImageNet LSVRC-2010

competition into a thousand different classes, and a variant of the well trained model was entered to

the ILSVRC-2012 contest. Two years later, the width and depth of CNN were increased while

keeping the computational budget constant by carefully crafted designs in Caffe (Jia et al., 2014). The

quality of the 22 layers deep network, GoogLeNet (Szegedy et al., 2014), was assessed in the

competition of detection and classification. With CNN becoming more of a commodity in the

computer vision field, many research groups attempted to improve the original architecture of

AlexNet. Simonyan et al. (Simonyana & Zisserman, 2014) from Oxford’s renowned Visual Geometry

Group (VGG) also got good results in ILSVRC 2014 by increasing the CNN depth with very small

convolution filters and showed a significant improvement by pushing the depth to 16–19 weight

layers. Yet, the overall trend of CNN is making the networks deeper and deeper. In a popular recent

work, ResNet (He, Zhang, Ren, & Sun, 2015), the neural network depth is eight times larger than

VGG. With the proposed residual learning framework and substantially deeper network, they won the

1st place on the ILSVRC 2015 classification task. Although CNN with thousands of layers have been

developed recently, very few of them focus on the imbalanced datasets.

With the rapidly growing of neural network depths and modern multimedia datasets, more

computational power and efficient clusters are needed. Several data processing engines are turning

towards generalized MapReduce frameworks (Dean & Ghemawat, 2008). Apache Spark (Zaharia et

al., 2012) was able to develop an open-source distributed processing engine called Spark that

increases the capability of conventional MapReduce use-cases. This extension has contributed to two

common classes, the iterative algorithms (i.e., machine learning graphs) and the interactive data

mining multiple computation chains. Spark naturally dovetails into Hadoop ecosystems with the

HDFS storage and Yarn or Mesos as the managers. Yahoo developed a spark package that brings deep

learning to Hadoop and Spark clusters named CaffeOnSpark (CaffeOnSpark website) which supports

neural network model training, testing, and feature extraction as a distributed extension of Caffe.

Though a small number of this kind of tools were proposed in the past two years, most of them are

still in the development stage with unstable functions and cannot be directly applied to the current

CNN frameworks.

Convolutional neural network (CNN) structures

As to be introduced in this section, the deep learning frameworks like CNN have been proven to be

one of the most significant developments recently and is famous for its ability to create multiple

levels of training and abstraction that help to understand the data easily. This section discusses how

the CNN framework can be utilized for the multimedia class-imbalanced datasets.

CNN is a subdivision of the deep neural network chain in deep learning that, at the root, are variants

of multilayer perceptron. CNNs are configured to utilize minimum resources in preprocessing (Hastie,

2005; LeCun, Bottou, Bengio, & Haffner, 1998). This is done with two techniques: the first is to limit

the links among the invisible sections and the input section so that each invisible section links to only

a subset of the input called feature maps. The motivation behind the technique of having locally

linked networks is taken from the visual cortex where neurons also have local receptive fields (Kanel,

2009). The second technique is to develop simplified computations of images. Since natural images

have the tendency of being stationary, the statistics of the different regions of natural images are

similar. The second technique takes the advantage of this, utilizes a random subset of trained features,

and convolves them to acquire feature activations of the remaining image. Then these acquired

features can be used either directly or as ensemble statistics for classifying the data. The ensemble

statistics have the characteristics of being comparably very low dimensionality and not overfitting the

model as well.

Generally speaking, a CNN model consists of three kinds of layers, which are convolutional, pooling,

and fully connected layers (Bouvrie, 2006). The convolutional layer is composed using several

feature maps as defined in Equation (1). The feature map of the lth layer and jth feature batch ௝ܺ
௟ is

evaluated by convolving the feature maps of its preceding layer ௝ܺ
௟ିଵ. The convolution process uses

the activation function f with trained kernels ܭ௜௝
௟ and an additive bias ௝ܾ

௟. The first layer ௝ܺ
ଵ

corresponds to the input data, a logistic function is selected as the activation function f that

corresponds an assortment of the input maps.

௝ܺ
௟ ൌ ݂ ቀ∑ ௜ܺ

௟ିଵ ∗ ௜௝ܭ
௟

௜∈ெೕ
൅ ௝ܾ

௟ቁ , ݈ ൒ 2; (1)

Here, a feature map is divided into several batches ܯ௝, where ܯ௝ represents the data batches and i is

the index of each those batches. The pooling layer takes in the input features as given in Equation (2)

and outputs a subsampled version of it. Here, the operation “pool” stands for a pooling procedure that

evaluates the ensemble statistics of the input maps, ߚ௝
௟ depicts the multiplicative bias, and ௝ܾ

௟ shows

the additive bias. The pooling layer is normally placed after each convolutional layer and it typically

is designated as a mean or max pooling procedure.

௝ܺ
௟ ൌ ݂൫ߚ௝

௟݈݋݋݌ሺ ௝ܺ
௟ିଵሻ ൅ ௝ܾ

௟൯, ݈ ൒ 2. (2)

The fully-connected layer is developed to be the high-level reasoning layer in the network. It is placed

after or close to the terminal layers of the neural network. All neurons from the earlier layers are then

connected to each neuron in the fully-connected layer.

Proposed imbalanced multimedia concept retrieval framework: CNN with

bootstrapping

Our deep learning framework is contrasting from the negative bootstrap framework developed in (He,

Zhang, Ren, & Sun, 2014) that joins random sampling and adaptive selection to recursively search the

related negatives. The proposed bootstrapping sampling technique integrates oversampling with

decision fusion to improve the CNN’s classification accuracy on multimedia data that may or may not

have skewed class attributions.

Even after the tremendous success of deep learning frameworks, to the best of our knowledge, only a

handful of papers target the challenging problem of skewed class multimedia data. As a matter of fact,

directly applying deep learning methods on imbalanced data ends in a very bad classification

accuracy. This is illustrated by the empirical study results comparing the balanced and imbalanced

datasets in Figure 1 where x-axis is for the number of training iterations while y-axis is for error rate,

and the error rate of the prediction is compared to the increasing number of iterations of a CNN deep

learning n

decrease

Figures 1

oscillatin

The group

all negati

distributio

Figure 1

network. In t

to definite p

(c) and 1(d)

g error rate i

ping become

ve data insta

on is a low a

. [Difference

the case of b

points. Howe

, the predict

is because th

es unfair wh

ances and no

accuracy cla

(a)

(c)

e in the total

balanced data

ever, when th

ion error rat

he deep learn

hen the data i

o positive da

ssification m

l error rate p

imba

asets in Figu

he CNN is u

es waver abo

ning training

is imbalance

ata instances.

model.

produced fro

alanced data

ures 1(a) and

used with imb

out plateau p

g stages allot

ed and some

. The result o

om (a) & (b)

asets]

d 1(b), the er

balanced dat

points. The r

t the training

groups may

of this imbal

(b)

(d)

) balanced d

rror rates ste

tasets as sho

reason behin

g data into gr

y end up con

lanced class

datasets and

eadily

own in

nd this

roups.

taining

(c) & (d)

Conventional bootstrapped samples have the imbalanced dataset with ݊ ≫ ݉, where n and m are the

numbers of negative and positive data instances, respectively. Our proposed framework generates

batches of sneg and spos data instances to balance out the ratio ݎ ൌ ௣௢௦, where sneg is the number ofݏ/௡௘௚ݏ

negative data instances and spos the number of positive ones. Therefore, totally M batches will be

generated, where:

ܯ ൌ ඌ ௡

௦೙೐೒
ඐ (3)

Another way to see it is when n is not exactly divisible by sneg, any remaining negative data instances

will be removed in the training stage. Since the total count of negative data instances n in the training

set is large and the batch size ݏ ൌ ௡௘௚ݏ ൅ ௣௢௦ is typically small (i.e., resulting in a small sneg), theݏ

removed negative data instances become negligible comparative to the data instances used in the

training stage. Then from the m positive data instances, one positive data instance is randomly chosen

spos times and combined with sneg negative data instances for each batch. This process is repeated I

times to produce the batches in each learning repetition until the error rate converges. This random

stochastic process assures an equivalent probability for each positive data instance to be selected and

trained with various negative data instances and eventually avoid overfitting. Table 1 illustrates the

discussed process. In each repetition process, the bootstrapping process produces a pseudo balanced

training set from the original imbalanced dataset, which can be then used by the deep learning model

for learning.

Table 1. Proposed module of CNN with bootstrapping.

PSEUDO CODE OF CNN WITH BOOTSTRAPPING
1. Split the training set into a positive set pos and a negative set neg
2. Divide neg into M batches, each with sneg negative data instances
3. for 1:I
4. for 1:M
5. for 1:spos
6. randomly pick one data instance from pos;
7. end for;

8. combine the data instances in pos and neg together;
9. end for;
10. Train a CNN model;
11. end for;
12. end;

Let the size of each input be ݉ ൈ݉ such that a four mid-layer CNN forms as depicted in Table 2,

where kL represents the number of mask neurons applicable on a given subgroup of input values and

݊௅ ൈ ݊௅ indicates the size of each mask in the Lth convolution layer. The output from the Lth

convolution layer is given to the Lth pooling layer and it is split into a group of non-overlapping

rectangles of size ݌௅ ൈ ,௅, where the pooling operations are applied for downsampling. Furthermore݌

the bootstrapping method explained earlier is then used to generate N batches of balanced training

instances that are given to the first layer of CNN in iterations. The input layer is followed by two

convolutional layers, and then followed by their respective mean pooling layers. The first

convolutional layer produces the inner product of the ݇ଵ ൈ ሺ݊ଵ ൈ ݊ଵሻ masks and passes the output to

the first mean pooling layer. Mean pooling layers summarize the outputs of the neighboring subsets

of masks in the same kernel map. The output of the pooling layer is passed as the input to the second

convolutional layer. This is followed by the mean pooling layer using the same process as mentioned

earlier but with different mask sizes. The size of the vector of the final CNN layer denotes the number

of classes attributed to the data. Our experiment performs binary classification, and thus the size is set

to 2.

Table 2. Training parameters for CNN.

Layer Layer size Output size
Input (m*m)
Convolution 1 k1*n1*n1 k1*(m-n1+1)*(m-n1+1)
Pooling 1 p1*p1 k1*(m-n1+1)/p1*(m-n1+1)/p1

[let m2=(m-n1+1)/p1]
Convolution 2 k2*n2*n2 k2*(m2-n2+1)*(m2-n2+1)
Pooling 2 p2*p2 k2*(m2-n2+1)/p2*(m2-n2+1)/p2
Output 2

Finally, th

receiving

method c

imbalanc

effectiven

Fig

Integra

The traini

month to

observed

the raw d

approach

This key

substantia

he conseque

g the highest

an be observ

ed dataset of

ness in the co

igure 2. [Tot

tion of CN

ing time of C

train 1755 v

in the literat

data at the inp

by using the

process here

ally reduce t

ent convoluti

score will b

ved from the

f Figures 1(c

onvergent pr

(a)

tal error rate

NN and low

CNN is noto

videos to ach

ture that trai

put layer. To

e low-level m

e is that we p

the m value (

ion masks an

e attributed

e prediction e

c) and 1(d), r

rocess.

es convergen

boots

w-level fea

orious for bei

hieve sufficie

ining a deep

o improve th

multimedia f

propose to fe

(18 in the pr

nd weights a

to the test da

error rates sh

respectively

nce generate

trapping me

atures

ing computa

ent performa

learning me

he efficiency

features that

eed the low-l

oposed expe

are used for c

ata instance.

hown in Figu

y. The descen

ed from imba

ethod]

ationally taxi

ance metrics

ethod is subs

y of CNN, we

t are much sm

level feature

eriment) and

classification

. The benefit

ure 2 as it is

nding error r

(b)

alanced data

ing. For exa

s (Karpathy e

stantially lon

e first propo

maller than t

es into the C

d greatly imp

n and the cla

t of the boot

s applied to t

rates illustrat

asets using o

mple, it took

et al., 2014)

nger if provid

ose a differen

the raw sign

CNN directly

prove the pro

ass

tstrapping

the

te the

our

k one

. It is

ded with

nt

nal data.

y to

ocessing

times. These low-level features are composed of Haar (Verma & Maru, 2009), HOG (Yan et al.,

2014), HSV, YCbCr (Sural, Qian, & Pramanik, 2002), and CEDD (Chatzichristofis & Boutalis, 2008).

These are chained into a feature vector which is then transformed to a matrix using PCA (Principle

Component Analysis). This transformation is required because CNN does not support one-

dimensional vectors and the features are fed as an 18 by 18 matrix. The sizes of the matrix and masks

in Table 3 are decided based on empirical studies and could be adjusted with different feature

dimensions and datasets.

The internal deep learning process of the CNN is similar to what is described in the previous section,

except for the pooling layers that are removed because the low-level features are not necessarily

stationary in every iteration. Table 3 illustrates the detailed training parameters used in the proposed

framework. Since we have earlier reduced the dimensions of the input features, a relatively small

mask size can be applied, in comparison to that in (CaffeOnSpark website).

Table 3. Training parameters.

Layer Mask size Output Size
Input (18*18)
Convolution 1 6*3*3 6*16*16
Convolution 2 9*3*3 9*14*14
Output 2

Deployment of the proposed framework on a Spark cluster

A shortcoming of using low-level features is potentially losing information. Thus, another idea of

making an efficient framework is to build it on top of a big data processing system. In this paper, we

built our model on top of our dedicated Spark cluster. The cluster is running most recent versions of

the required distributed big data infrastructure, i.e., Apache Hadoop 2.7.3 with Yarn and Apache

Spark 2.0. The developed Spark cluster serves as the primary test bed cluster for deep learning and

distribute

al., 2016)

Figure 3 i

node conn

but is nor

workers w

Hadoop H

in Figure

The main

storage ab

can be op

Hadoop D

coordinat

achieved

ed processing

).

illustrates th

nected to a d

rmalized to t

with 4 GB of

HDFS instan

3.

n abstraction

bstraction of

perated on in

Distributed F

ted by the m

by modifyin

g experimen

he core infras

dedicated cla

the least perf

f memory an

nces in all da

Figure

that Spark p

f frame conf

n parallel. Th

File System (

aster node in

ng the Spark

nts (Yan, Shy

structure of t

ass-c dedicat

forming nod

nd 1 TB of st

ata nodes, na

3. [The infra

provides is a

fidence score

hese RDDs w

(HDFS). Th

n the cluster

k configuratio

yu, & Zhu, 2

the cluster. T

ted IP. The o

de in the infra

torage. The

amely data n

astructure of

a resilient dis

e elements pa

were created

e proposed C

which has a

on and settin

2016; Yan, Z

There are 4 n

overall cluste

astructure. E

data files we

node 1, data n

f our spark c

stributed dat

artitioned ac

d from confid

CNN framew

a driver prog

ng parallelism

Zhu, Shyu, &

nodes in tota

er configura

Each node is

ere replicate

node 2, and

cluster]

taset (RDD),

cross the nod

dence score f

work ran on

gram. Linear

m to the num

& Chen, 2016

al with our m

ation is heter

setup to ins

ed across the

data node 3

, an in-memo

des of the clu

files present

Spark as tas

r speedup wa

mber of core

6; Yan et

master

rogeneous

tantiate 2

e three

as shown

ory

uster that

t in

sks

as

es present

in the cluster to utilize the cluster to its maximum capacity. It is recommended that a maximum of 2

to 3 tasks are to be run on a CPU core at an instance of time. The number of tasks executed in parallel

on a node is equal to the number of cores in the corresponding node. Spark automatically sets the

number of map tasks to run on each file according to the number of partitions present. A partition is

defined by each file which is loaded from the HDFS. Executors were started on each node of the

cluster to perform the tasks.

Deep learning methods are notorious for computationally expensive and impractical for streaming

data. Our attempt to overcome this challenge is to use a distributed environment and Spark. By the

empirical testing and evaluation, it was observed that the same neural network implementation using

Java in Apache Spark 2.0 achieved 400% speed improvement over Matlab 10 performed on the same

cluster.

There are a lot of use-cases where multi-core or GPU based processing or conventional HPC systems

may be significantly faster than any Spark implementation. We have to take all the feasibility cases

into account and argue our case of building a system to make positive forward progress in our

research. Since Spark is only good with recursive statements and streaming inputs, in the case of

classifying data, MapReduce will probably do a competitive job to Spark due to the fact that there is

only one time read involved from the hard disk.

Although the Spark clusters are proven to be suitable for recursive computing, how to distribute the

neural network training remains as a challenging issue. Since all parameters in a certain layer are

updated after training each mini batch, most popular neural network models cannot be deployed on

distributed computing clusters to run parallel processing. Another problem to deploy the neural

network frameworks on Spark is that Spark supports Scala and Java stably, but only partially supports

Python. H

parallel c

The basic

Figure 4,

With the

different

parameter

node distr

each slav

iterations

parameter

to the slav

Hence, we us

omputing on

c idea of train

the input da

same as the

from the “ba

r set and an

ributes the p

e node train

, the parame

rs and states

ve nodes as

Fig

se a deep lea

n training the

ning a neura

ata is divided

regular neur

atch”), the S

initial netwo

parameters, c

s its own por

eters and stat

s to update th

well as the w

gure 4. [The

arning tool w

e neural netw

al network m

d into severa

ral network t

park driver (

ork configur

configuration

rtion of the s

tes are sent b

he trained ne

workers agai

e flowchart of

written in jav

work models

model on Spa

al subsets bas

training step

(i.e., the mas

ation. For ea

n, and netwo

subset and u

back to the m

eutral networ

in for further

of training C

va called Dee

s.

ark is parame

sed on the co

ps (please no

ster node) st

ach subset of

ork updater s

updates the p

master node

rk. Then, the

r training.

CNNs on our

eplearning4j

eter averagin

onfiguration

ote that the “

tarts with a r

f the training

states to all s

parameters a

which will a

e average va

Spark cluste

j to impleme

ng. As drawn

n of the mast

data split” h

randomly gen

g data, the m

slave nodes.

s well. After

average the

alues are dist

er]

ent

n in

ter node.

here is

nerated

master

Then,

r several

tributed

In this study, we identify the best available features to identify the skewed and imbalanced classes and

improve the classification of the imbalanced datasets. It is an industry best practice to start with the

current best features and further improve the performance by processing the skewed and imbalanced

classes. Recently, those features extracted from pre-trained deep learning models are proven to

outperform traditional low-level features. In this paper, we use a pre-trained and fine-tuned CNN

model on the ImageNet data, Alexnet (Krizhevsky, Sutskever, & Hinton, 2012), for keyframe feature

extraction. The Alexnet structure is well trained and proven with great performance. It contains five

convolutional layers and three fully-connected layers and our CNN features are extracted from all the

training and testing keyframes from the output layer, i.e., the 8th layer with one-thousand dimensions.

These features are finally fed to a neural network with two fully connection layers, where the first

layer contains 100 neurons and the second one is composed of 10 neurons.

Performance measurement

In general, a classifier is evaluated by a confusion matrix as illustrated in Table 4. The columns are

the predicted class and the rows are the state of nature (actual class). In the confusion matrix, TP

(True Positives) and FP (False Positives) represent the numbers of positive data instances that are

correctly or incorrectly classified, respectively. Similarly, TN (True Negatives) and FN (False

Negatives) indicate the numbers of negative data instances being correctly or incorrectly classified,

respectively. For performance comparison, the precision and recall metrics (Buckland & Gey, 1999)

are commonly used and are derived from the confusion matrix in Table 4 and Equations (4) and (5).

Table 4. Confusion Matrix.

Predicted
Positive

Predicted
Negative

State of nature
Positive

True Positives
(TP)

False Negatives
(FN)

State of nature False Positives True Negatives

Negative (FP) (TN)

The recall and precision goals can often be conflicting, since the increase of true positive data

instances for the minority class may also increase the number of false positive data instances, which

will reduce the precision. For imbalanced data classification, the recall value is normally considered a

more important criterion because it is more desirable to detect as many interesting events as possible,

even at the expense of adding a reasonable number of false positive data instances. For example,

users often want to locate all possible frauds in banking operations followed by a manual double

check to root out false alarms, instead of missing true scams. In addition, F-score, also known as F1

measurement or F-value, captures the trade-offs between precision and recall, and is considered an

objective and ultimate quality metric of a classifier which is defined in Equation (6).

݊݋݅ݏ݅ܿ݁ݎ݌ ൌ ்௉

்௉ାி௉
 (4)

݈݈ܽܿ݁ݎ ൌ ்௉

்௉ାிே
 (5)

ܨ െ ݁ݎ݋ܿݏ ൌ 2 ൈ ௣௥௘௖௜௦௜௢௡ൈ௥௘௖௔௟௟

௣௥௘௖௜௦௜௢௡ା௥௘௖௔௟௟
 (6)

Evaluation on the UCF11 dataset

First, our proposed model is tested on a relatively balanced video dataset, UCF YouTube Action

(UCF11) dataset (Liu, Yang, & Shah, 2009), to prove the efficiency of feeding the low-level features

to the CNN models. UCF11 includes videos collected from YouTube with various problems like non-

static background, low video quality, camera motions, poor illumination conditions, etc. It is a

relatively balanced dataset as compared to the TRECVID dataset and contains 11 action categories:

basketball shooting, biking/cycling, diving, golf swinging, horseback riding, soccer juggling,

swinging, tennis swinging, trampoline jumping, volley ball spiking, and walking with a dog. This data

set is very challenging (Liu, Luo, & Shah, 2009) due to the large variations in camera motion, object

appearance and pose, object scale, viewpoint, cluttered background, illumination conditions, and etc.

For each

video clip

backgrou

each UCF

detect loc

space and

detected e

the STIP

technique

in GMMs

employed

data insta

CNN trai

Figure 5.

category, the

ps in the sam

und, and simi

F11 video. S

cal structures

d time. STIP

events and c

features are

e for fast com

s (Gaussian M

d. Since UCF

ances are ran

ning. Figure

. [Example o

e videos are

me group sha

ilar viewpoin

TIP is built

s in space-tim

features can

computing th

reduced to 3

mputation pu

Mixture Mo

F11 is a relat

ndomly picke

e 6 shows som

of UCF11 (U

grouped int

are some com

nt. The STIP

on the idea o

me where th

n be obtained

heir scale-inv

32 from 162

urposes. In th

odels) are use

tively balanc

ed from each

me example

UCF YouTub

o 25 groups

mmon featur

P features (L

of the Harris

he image valu

d by estimat

variant spatio

by applying

he video rep

ed and the le

ced dataset,

h category (5

e frames from

be action) da

with more t

res, such as t

Laptev & Lin

s and Forstne

ues have sig

ting the spati

o-temporal d

g the princip

presentation p

eave-one-out

in the bootst

5 in our expe

m the UCF11

ata set with a

than 4 action

the same act

ndeberg, 200

er interest po

gnificant loca

io-temporal

descriptors.

ple componen

part, 256 Ga

t cross valid

trapping step

eriment) to f

1 dataset.

approximate

n clips in it. T

or, similar

03) are extrac

oint operator

al variations

extents of th

The dimensi

nt analysis (

aussian comp

dation schem

p, a small nu

form the batc

ely 1,168 vid

The

cted from

rs to

in both

he

ions of

PCA)

ponents

me is

umber of

ches for

deos in 11

categories]

Table 5 shows the confusion matrix of applying our framework to the UCF11 dataset. Here, “Bas”

denotes basketball shooting, “Bik” is for biking/cycling, and so on. The vertical labels are the ground

truth, i.e., the actual labels; while the horizontal side shows the prediction labels. The number in each

grid shows the percentage of the data instances. For instance, the number “85” shows that 85 percent

of the ‘horseback riding’ testing instances are correctly identified; while the number “1” shows that 1

percent of the horseback riding data instances are misclassified as soccer juggling. Table 6 shows the

performance comparison between our approach and three other state-of-the-art methods. Specifically,

(Perez et al., 2012) used the combination of Histograms of Gradients into orientation tensors and

applied SVM as the classifier. In (Liu, Luo, & Shah, 2009), motion features based on the ROI

(Region of Interest) estimation and AdaBoost were used to integrate all the heterogeneous yet

complementary features for recognition. In (Mota et al., 2014), SVM was applied to a tensor motion

descriptor with optical flow for action recognition.

Table 5. Confusion Matrix of the UCF11 Dataset.

 Bas Bik Div Gol Hor Soc Swi Ten Tra Vol Wal

Basketball shooting 55 5 3 8 1 1 2 13 0 11 1

Biking 1 73 0 0 10 0 3 3 2 2 5

Diving 5 2 76 1 1 1 2 1 1 6 3

Golf Swing 12 1 1 82 0 1 2 2 0 0 0

Horse Riding 1 6 1 0 85 1 1 1 1 0 6

Soccer Juggling 4 1 1 4 5 63 6 5 1 4 5

Swinging 1 4 4 1 1 1 79 0 4 3 2

Tennis Swing 8 1 1 8 4 3 2 72 1 1 1

Trampoline Jumping 1 0 1 0 2 9 8 1 77 1 1

Volleyball Spiking 7 1 2 1 0 2 1 8 0 79 0

Walking with a dog 2 7 2 3 20 1 2 5 2 0 54

As shown in Table 6, our approach achieves the best accuracy rate among all the methods. This

experiment clearly proves that while our framework aims to address the challenges caused by a highly

imbalanced data distribution, it is also very effective in classifying relatively balanced datasets.

Table 6. Result Comparison for the UCF11 Dataset.

Group Accuracy
Perez et al. (2012) 68.9%

Liu, Luo, & Shah (2009) 71.2%
Mota et al. (2014) 72.7%
Our Framework 72.8%

Experimental results on the TRECVID dataset

In order to demonstrate the effectiveness of our proposed framework for imbalanced multimedia data

classification, the TRECVID dataset (Awad et al., 2016), a large-size benchmark dataset with highly

skewed data distribution, is used in the experiment. In particular, the IACC.1 dataset from the

TRECVID 2015 datasets (Over et al., 2015) is used. The semantic indexing (SIN) task in TRECVID

2015 aims to recognize the semantic concept contained within a video shot, which can be an essential

technology for retrieval, categorization, and other video exploitations. Here, the concepts refer to the

high-level semantic objects such as a car, road, and tree. Figure 6 shows four sample keyframes with

the labeled concepts. There are several challenges such as data imbalance, scalability, and semantic

gap. As a result, traditional deep learning approaches, including CNNs, often perform poorly on the

TRECVID dataset due to the problem of under-fitting, huge diversity, and noisy and incomplete data

annotation (Sun et al., 2013; Snoekyz et al., 2013). Please note that the data imbalance degrees of

different

every test

of positiv

than the n

Figure

Here, the

is highly

262,911 d

proposed

ratios low

data insta

concepts var

ting concept

ve data instan

number of po

e 6. [Sample

TRECVID

imbalanced

data instance

framework

wer than five

ances and the

ry in the TRE

t. To address

nces in the tr

ositive traini

keyframes w

bicycl

dataset is ch

(Smeaton et

es are used fo

is evaluated

e ten-thousan

e number of

ECVID data

 this issue, th

raining set. I

ing data inst

with annotat

ling, tree, po

hosen mainly

t al., 2006). I

for training; w

d on 84 conce

ndths, where

negative dat

aset, and thu

he batch size

In this exper

ances.

ed concepts

olitics, and f

y because it c

In the select

while 113,04

epts with sev

e the P/N rati

ta instances.

us a fixed bat

e is chosen d

riment, the b

in the TREC

face, respect

contains a la

ted IACC.1 d

46 data insta

verely skewe

io is the ratio

. As indicate

tch size may

dynamically

batch size is s

CVID datase

tively]

arge number

dataset, a tot

ances are use

ed data distr

o between th

ed in (Qiong

y not be suita

y based on th

set to be twi

et: the concep

r of data insta

tal number o

ed for testing

ributions and

he number o

, Li, & Zhih

able for

he number

ice bigger

epts are

ances and

of

g. Our

d P/N

f positive

hua,

2009), in imbalanced data classification, the recall metric is considered more important than precision

and the F-score represents the trade-off between precision and recall. As shown in Figures 7 and 8,

the recall and F-score values of our proposed framework using the low-level features and the features

from the pre-trained CNN models are compared with the scores from TiTech (Tokyo Institute of

Technology) that achieved the best performance in the semantic indexing task several times in the

past years (Inoue et al., 2011; Inoue & Shinoda, 2012).

In case of the TRECVID confidence score evaluation, we have to work with the unstructured key-

value pairs of the TRECVID video shots. There is a need to store the massive TRECVID multimedia

data, in the order of several Terabytes, with redundancy over the years since 2003 until recent. We

have stored the TRECVID video frames as well as the extracted confidence scores that are

continuously used in our models to compare with previous datasets or to train for the recent

competition. The photos and video frames can be stored in the HDFS and processed using the Spark

engine and the confidence scores can be assigned and stored back in the HDFS. The resultant

confidence scores are unstructured key-value pairs that need to be stored in the HDFS based

redundant data store and accessed for data mining processing. Therefore, Spark befits as a perfect

candidate solution to our problem.

From the results drawn on Figures 7 and 8, our F-scores generated from the low-level features are

higher than those of the TiTech group for two thirds of the 84 concepts; while the results by those

features from the pre-trained CNN models perform better than four fifths of the TiTech scores. For the

recall measurement, both of our frameworks generate better results for almost every concept. The

only exception is when using the low-level features, they may fail to identify a true positive data

instance due to the noisy data annotations and information lost in feature extraction. It is also worth

noting that for 50 concepts, the TiTech group can only locate zero or one true positive data instance;

while our approach reaches more than 0.628 recall value on average. This clearly demonstrates the

effectiveness of integrating CNNs with the bootstrapping strategy in our proposed framework for

imbalanced multimedia data classification, especially on the fact that the study in (Batista, Prati, &

Monard, 2004) showed that the performance of CNNs is far worse than all other classifiers the

authors tried on the TRECVID dataset.

Figure 7. [Recall comparisons on all imbalanced concepts]

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

84 concepts

R
ec

al
l

TiTech

Our model with low-level features

Our model with features from pre-trained CNN models

Figure 8. [F-score comparisons on all imbalanced concepts]

Conclusions and future work

In this paper, we proposed to extend the convolutional neural networks based deep learning technique

by incorporating a bootstrapping algorithm. Moreover, to achieve faster computation speeds and

better handling of unstructured key-value pairs of the TRECVID video data, we harnessed the power

of Apache Spark. Our Spark system is implemented on a dedicated Spark cluster developed solely for

the computational needs of our research group. In the bootstrapping stage, pseudo balanced training

batches are rendered and inserted into the CNN for classification. The experimental results establish

the effectiveness of the proposed framework for accurately classifying highly imbalanced multimedia

data. Different from many existing methods in deep learning that take the required raw media data in

the input layer, our deep learning framework works efficiently on the low-level features, which

largely reduces the required training time in deep learning. Furthermore, a computational boost is

achieved with the power of distributed computing using Apache Spark and better information

retrieval results are generated by the features from the pre-trained CNN models.

0 10 20 30 40 50 60 70 80

0

0.02

0.04

0.06

0.08

0.1

84 concepts

F
-s

co
re

TiTech

Our model with low-level features

Our model with features from pre-trained CNN models

Though we propose a powerful imbalanced big data processing system using Spark in this paper,

running deep learning algorithms on GPU is much more efficient than on CPU. Therefore, it is better

to extend the system for accelerating deep learning on Spark applications using GPUs. Since GPUs

provide both high-computation capabilities and high-memory bandwidth, they can be used to

accelerate both computation-intensive and memory-intensive Spark jobs. In the future, we plan to

enhance our system and run deep learning applications on distributed GPUs with Spark.

REFERENCES

G. Awad, J. Fiscus, M. Michel, D. Joy, W. Kraaij, A. F. Smeaton, G. Qunot, M. Eskevich, R. Aly, and R. Ordelman.

“Trecvid 2016: Evaluating Video Search, Video Event Detection, Localization, and Hyperlinking,” In

Proceedings of TRECVID 2016, NIST, USA, 2016.

G. E. Batista, R. C. Prati, and M. C. Monard, “A Study of the Behavior of Several Methods for Balancing Machine

Learning Training Data,” SIGKDD Explorations, vol. 6, issue 1, pp. 20-29, June 2004.

J. Bouvrie, “Notes on Convolutional Neural Networks,” Online technical report, 2006.

M. Buckland and F. Gey, “The Relationship Between Recall and Precision,” Journal of the American Society for

Information Science, vol. 45, issue 1, pp. 12-19, January 1999.

S. A. Chatzichristofis and Y. S. Boutalis, “CEDD: Color and Edge Directivity Descriptor: A Compact Descriptor for

Image Indexing and Retrieval,” In Proceedings of the 6th International Conference on Computer Vision Systems,

pp. 312–322, Berlin, Heidelberg, 2008.

N.V. Chawla, K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer, “SMOTE: Synthetic Minority Overbootstrapping

Technique,” Journal of Artijcial Intelligence Research, vol. 16, pp. 321-357, 2002.

C. Chen and M.-L. Shyu, “Clustering-based Binary-class Classification for Imbalanced Data Sets,” In Proceedings of the

12th IEEE International Conference on Information Reuse and Integration, pp. 384-389, Las Vegas, Nevada,

USA, August 2011.

C. Chen and M.-L. Shyu, “Integration of Semantics Information and Clustering in Binary-class Classification for

Handling Imbalanced Multimedia Data,” Edited by Tansel Ozyer, Keivan Kianmehr, Mehmet Tan, and Jia Zeng,

Information Reuse and Integration in Academia and Industry, Chapter 14, Springer Verlag, 2013.

X. Chen, S. Xiang, C.-L. Liu, and C.-H. Pan, “Vehicle Detection in Satellite Images by Hybrid Deep Convolutional

Neural Networks,” IEEE Geoscience and Remote Sensing Letters, vol.11, no.10, pp. 1797-1801, Octorber 2014.

D. Jeffrey and S. Ghemawat. “MapReduce: Simplified Data Processing on Large Clusters,” Communications of the ACM,

vol. 51, issue 1, pp. 107-113, 2008.

T. Hastie, “Neural Networks,” Edited by P. Armitage and T. Colton, Encyclopedia of Biostatistics, John Wiley & Sons,

2005.

K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition,”

In Proceeding of the European Conference on Computer Vision, pp. 346-361, Zurich, Switzerland, September 6-

12, 2014.

N. Inoue and K. Shinoda, “A Fast and Accurate Video Semantic-Indexing System Using Fast MAP Adaptation and GMM

Supervectors,” IEEE Transactions on Multimedia, vol. 14, no. 4-2, pp. 1196-1205, 2012.

N. Inoue, T. Wada, Y. Kamishima, K. Shinoda, and S. Sato, “TokyoTech+Canon at TRECVID 2011,” In Proceedings of

the TRECVID Workshop 2011, December 5, 2011.

S. Ji, W. Xu, M. Yang, and K. Yu, “3D Convolutional Neural Networks for Human Action Recognition,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 221-231, January 2013.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional

Architecture for Fast Feature Embedding,” arXiv:1408.5093, 2014.

J. Jin, K. Fu, and C. Zhang, “Traffic Sign Recognition With Hinge Loss Trained Convolutional Neural Networks,” IEEE

Transactions on Intelligent Transportation Systems, vol.15, no. 5, pp. 1991-2000, October 2014.

E. R. Kandel, “An Introduction to the Work of David Hubel and Torsten Wiesel,” The Journal of Physiology 587 (Pt 12),

pp. 2733–2741, April 2009.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-Scale Video Classification with

Convolutional Neural Networks,” In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 1725-1732, June 2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘’Imagenet Classification with Deep Convolutional Neural Networks’’,

Advances in Neural Information Processing Systems, pp. 1097-1105, 2012.

I. Laptev and T. Lindeberg, “Space-Time Interest Points,” In Proceedings of International Conference on Computer

Vision, pp. 432-439, 2003.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based Learning Applied to Document Recognition,”

Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, November 1998.

L. Lin, C. Chen, M.-L. Shyu, and S.-C. Chen, “Weighted Subspace Filtering and Ranking Algorithms for Video Concept

Retrieval,” IEEE Multimedia, vol. 18, no. 3, pp. 32-43, July-September 2011.

L. Lin, G. Ravitz, M.-L. Shyu, and S.-C. Chen, “Video Semantic Concept Discovery using Multimodal-based Association

Classification,” In Proceedings of the IEEE International Conference on Multimedia & Expo, pp. 859-862,

Beijing, China, July 2-5, 2007.

D. Liu, Y. Yan, M.-L. Shyu, G. Zhao, and M. Chen, “Spatio-temporal Analysis for Human Action Detection and

Recognition in Uncontrolled Environments,” International Journal of Multimedia Data Engineering and

Management, vol. 6, issue 1, pp. 1-18, 2015.

J. Liu, J. Luo, and M. Shah, “Recognizing Realistic Actions from Videos in the Wild,” In Proceeding of the IEEE

International Conference on Computer Vision and Pattern Recognition, pp. 1996-2003, June 20-25, 2009.

J. Liu, Y. Yang, and M. Shah, “Learning Semantic Visual Vocabularies using Diffusion Distance,” In Proceedings of the

IEEE International Conference on Computer Vision and Pattern Recognition, pp. 461-468, 2009.

X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory Undersampling for Class-Imbalance Learning,” IEEE Transactions on

Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 39, issue 2, pp. 539-550, April 2009.

Q. Mao, M. Dong, Z. Huang, and Y. Zhan, “Learning Salient Features for Speech Emotion Recognition Using

Convolutional Neural Networks,” IEEE Transactions on Multimedia, vol. 16, no. 8, pp. 2203-2213, December

2014.

T. Meng, Y. Liu, M.-L. Shyu, Y. Yan, and C.-M. Shu, “Enhancing Multimedia Semantic Concept Mining and Retrieval by

Incorporating Negative Correlations,” In Proceedings of the 8th IEEE International Conference on Semantic

Computing, pp. 28-35, June 16-18, 2014.

V. F. Mota, E. A. Perez, S. M. L. M. Da, M. B. Vieira, and P.-H. Gosselin, “A Tensor Motion Descriptor Based on

Histograms of Gradients and Optical Flow,” Pattern Recognition Letters, pp. 85-91, 2014.

P. Over, G. Awad, M. Michel, J. Fiscus, G. Sanders, W. Kraaij, A. F. Smeaton, G. Quenot, and R. Ordelman, “Trecvid

2015 – an overview of the goals, tasks, data, evaluation mechanisms and metrics,” In Proceedings of TRECVID

2015, NIST, USA, 2015.

E. A. Perez, V. F. Mota, L. M. Maciel, D. Sad, and M. B. Vieira, “Combining Gradient Histograms using Orientation

Tensors for Human Action Recognition,” In Proceeding of the International Conference on Pattern Recognition,

pp. 3460–3463, 2012.

G. Qiong, Z. Li, and C. Zhihua, “Evaluation Measures of the Classification Performance of Imbalanced Data Sets,” In

Proceedings of the 4th International Symposium, pp. 461-471, October

2009.

M.-L. Shyu, S.-C. Chen, M. Chen, C. Zhang, and K.Sarinnapakorn, “Image Database Retrieval Utilizing Affinity

Relationships,” In Proceedings of the First ACM International Workshop on Multimedia Databases, pp. 78-85,

November 7, 2003, New Orleans, Louisiana, USA.

M.-L. Shyu, C. Haruechaiyasak, and S.-C. Chen, “Category Cluster Discovery from Distributed WWW Directories,”

Journal of Information Sciences, vol. 155, issues 3-4, pp. 181-197, October 2003.

K. Simonyana and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,”

arXiv:1409.1556 [cs.CV], 2014.

A. F. Smeaton, P. Over, and W. Kraaij, “Evaluation Campaigns and TRECVid,” In Proceedings of the 8th ACM

International Workshop on Multimedia Information Retrieval, pp. 321-330, 2006.

C.G.M. Snoekyz, K.E.A. van de Sandeyz, D. Fontijnez, A. Habibiany, M. Jain, S. Kordumovay, Z. Liy, M. Mazloomy,

S.L. Pinteay, R. Taoy, D.C. Koelmayz, and A.W.M. Smeulders, “MediaMill at TRECVID 2013: Searching

Concepts, Objects, Instances and Events in Video,” TRECVID 2013, November 26 – 28, 2013.

Y. Sun, T. Osawa, K. Sudo, Y. Taniguchi, H. Li, Y. Guan, and L. Liu, “TRECVid 2013 Semantic Video Concept Detection

by NTT-MD-DUT,” TRECVID 2013, November 26–28, 2013.

S. Sural, G. Qian, and S. Pramanik, “Segmentation and Histogram Generation using the HSV Color Space for Image

Retrieval,” In Proceeding of the International Conference on Image Processing, pp. 589-592, 2002.

P. Swietojanski, A. Ghoshal, and S. Renals, “Convolutional Neural Networks for Distant Speech Recognition,” IEEE

Signal Processing Letters, vol. 21, no. 9, pp. 1120-1124, September 2014.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going

Deeper with Convolutions,” arXiv:1409.484, 2014.

C. Unsworth and G. Coghill, “Excessive Noise Injection Training of Neural Networks for Markerless Tracking in

Obscured and Segmented Environments,” Neural Computation, vol. 18, no. 9, pp. 2122-2145, September 2006.

D. Verma and V. Maru. “An Efficient Approach for Color Image Retrieval using Haar Wavelet,” In Proceeding of the

IEEE International Conference on In Methods and Models in Computer Science, pp. 1–5, 2009.

J. Wan, D. Wang, S.C.H. Hoi, P. Wu, J. Zhu, Y. Zhang, and J. Li, “Deep Learning for Content-Based Image Retrieval: A

Comprehensive Study,” In Proceedings of the ACM International Conference on Multimedia, pp. 157-166,

Novemember 2014.

Y. Yan, M. Chen, M.-L. Shyu, and S.-C. Chen, “Deep Learning for Imbalanced Multimedia Data Classification,” In

Proceedings of the 2015 IEEE International Symposium on Multimedia, pp. 483–488, December 2015.

Y. Yan, J.-W. Hsieh, H.-F. Chiang, S.-C. Cheng, and D.-Y. Chen, “PLSA-Based Sparse Representation for Object

Classification,” In Proceedings of the 2014 22nd International Conference on Pattern Recognition, pp. 1295-

1300, August 24-28, 2014.

Y. Yan, Y. Liu, M.-L. Shyu, and M. Chen, “Utilizing Concept Correlations for Effective Imbalanced Data Classification,”

In Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration, pp. 561-

568, August 13-15, 2014.

Y. Yan, S. Pouyanfar, H. Tian, S. Guan, H.-Y. Ha, S.-C. Chen, M.-L. Shyu, and S. Hamid, “Domain Knowledge Assisted

Data Processing for Florida Public Hurricane Loss Model,” In Proceedings of the 17th IEEE International

Conference on Information Reuse and Integration, pp. 441-447, July 28-30, 2016.

Y. Yan, M.-Ling Shyu, and Q. Zhu, “Supporting Semantic Concept Retrieval with Negative Correlations in a Multimedia

Big Data Mining System,” International Journal of Semantic Computing, vol. 10, issue 2, pp. 247-268, 2016.

Y. Yan, M.-Ling Shyu, and Q. Zhu, “Negative Correlation Discovery for Big Multimedia Data Semantic Concept Mining

and Retrieval,” In Proceedings of the 10th IEEE International Conference on Semantic Computing, pp. 55-62,

February 3-5, 2016.

Y. Yan, Q. Zhu, M.-L. Shyu, and S.-C. Chen, “A Classifier Ensemble Framework for Multimedia Big Data

Classification,” the 17th IEEE International Conference on Information Reuse and Integration, pp. 615-622, July

28-30, 2016.

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A.

Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica, ”Apache Spark: A Unified Engine for Big Data Processing,”

Communications of the ACM, vol. 59, no. 11, pp. 56-65, 2016.

L. Zhang and W. Wang, “A Re-sampling Method for Class Imbalance Learning with Credit Data,” In Proceedings of the

2011 International Conference on Information Technology, Computer Engineering and Management Sciences,

pp. 393-397, September 2011.

https://deepmind.com/research/alphago, website of AlphaGo (accessed in 2016)

https://github.com/yahoo/CaffeOnSpark, website of CaffeOnSpark (accessed in 2016)

