
Efficient Imbalanced Multimedia Concept 
Retrieval by Deep Learning 

on Spark Clusters 
 

Yilin Yan1, Min Chen2, Muhammad Saad Sadiq1, Mei-Ling Shyu1,* 

1Department of Electrical and Computer Engineering 

University of Miami, Coral Gables, FL 33146, USA 

2Computing and Software Systems 

University of Washington Bothell, Bothell, WA 98011, USA 

Emails: y.yan4@umiami.edu, minchen2@uw.edu, saadsadiq@miami.edu, 

shyu@miami.edu 

 

ABSTRACT 

The classification of imbalanced datasets has recently attracted significant attention due to its 

implications in several real-world use cases. In such scenarios, the datasets have skewed class 

distributions while very few data instances are associated with certain classes. The classifiers 

developed on such datasets tend to favor the majority classes and are biased against the minority 

class. Despite extensive research interests, imbalanced data classification still remains a challenge in 

data mining research, especially for multimedia data. Our attempt to overcome this hurdle is to 

develop a convolutional neural network (CNN) based deep learning solution integrated with a 

bootstrapping technique. Considering the fact that convolutional neural networks are very 

computationally expensive coupled with big training datasets, we propose to extract features from 

pre-trained convolutional neural network models and feed those features to another full connected 

neutral network. Spark implementation shows promising performance of our model in handling big 

datasets with respect to feasibility and scalability. 
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Introduction 

Skewness in data classes poses a significant challenge in major research problems pertaining to data 

mining and machine learning (Chen & Shyu, 2013; Chen & Shyu, 2011; Lin, Ravitz, Shyu, & Chen, 

2007). Classes are rated as skewed or imbalanced when their data instances are non-uniformly 

associated to the class label. In real world cases, most applications have some degree of skewness 

inherently present in the data. Such datasets are often grouped into major and minor classes, where 

major classes have significantly greater numbers of instances associated with them as compared to 

minor classes. Some prominent imbalanced dataset use cases include fraud detection, network 

intrusion identification, uncommon disease diagnostics, critical equipment failure, and multimedia 

concept sensing. A number of famous classification methods are built to utilize the dataset statistics, 

which ends up being biased towards the majority classes. When identifying the minor classes, these 

classifiers often perform inaccurately even for very large datasets with considerable numbers of 

training instances. 

 

Some notable frameworks aiming to solve this challenge are proposed in (Shyu, Haruechaiyasak, & 

Chen, 2003; Lin, Chen, Shyu, & Chen, 2011; Meng, Liu, Shyu, Yan, & Shu, 2014; Shyu, et al., 2003; 

Liu, Yan, Shyu, Zhao, & Chen, 2015; Yan, Chen, Shyu, & Chen, 2015). The authors of these 

frameworks, along with others, target this issue from two different perspectives. The first type is 

algorithm-based approaches where the authors propose new frameworks or improve the existing 

methods using both supervised and unsupervised techniques. The second, very different type is 

towards the manipulation of the data itself to reduce the skewness in the class attribution. However, 



the problem of imbalanced classes is far from being conquered, especially in multimedia data. 

Multimedia data is particularly difficult because of the various data types that are layered with spatio-

temporal features. 

 

One path to handle this challenging situation would be to employ solutions from other domains of 

machine learning such as deep learning.  Deep learning is the name of a whole family of algorithms 

that use graphs with multiple layers of linear and non-linear transformations to develop hierarchical 

learning models (Wan et al., 2014). Several frameworks have been proposed using the deep learning 

techniques that show promising results in application domains such as automatic speech recognition 

(Swietojanski, Ghoshal, & Renals, 2014), computer vision (Chen, Xiang, Liu, & Pan, 2014), and 

natural language processing (Mao, Dong, Huang, & Zhan, 2014). However, deep learning methods 

have not been used to address the problems of class-imbalance. As illustrated in Section IV of our 

empirical study and also presented in (Sun et al., 2013; Snoekyz et al., 2013) on the TRECVID 2015 

datasets, even the famous deep learning methods such as convolutional neural network (CNN) which 

outperforms a multitude of conventional machine learning techniques face difficulties when dealing 

with the class-imbalance problems. Moreover, for big datasets in multimedia data mining, deep 

learning methods are very expensive on computations. The method proposed in (Karpathy et al., 

2014) took more than 30 days to train with 1755 videos. The authors were only able to successfully 

train the deep learning framework using a near-duplicate algorithm. 

 

Toward such demands, our method is proposed to improve the TRECVID dataset confidence scores 

by a CNN based deep learning framework. In addition, a big data deep learning approach coupled 

with a bootstrapping sampling technique is proposed to create a balanced set of batches using the 

training dataset. To the best of our knowledge, bootstrapping has not been used with the deep learning 

frameworks. To further facilitate the capability of handling the class imbalance problem in big 



datasets, a distributed computation framework using Apache Spark is also implemented to bind the 

novel qualities of CNN with the bootstrapping procedures. The proposed framework has shown to be 

highly impressive and comparatively economical in classifying highly skewed multimedia datasets. 

The Spark-based distributed computing capability enables a scalable architecture that can mine 

unstructured key-value confidence scores of multimedia data. 

 

The remaining of the article is organized in the following manner. The following section discusses the 

related work in skewed data classification methods, followed by some recent progresses in deep 

learning. Our proposed framework is introduced in the Framework section with its performance 

evaluated using the experimental results in the next section. The last section concludes the findings 

and develops the direction for future research. 

 

Related work on classification for class-imbalance datasets 

As mentioned in the previous section, class-imbalanced data classification methods can be sorted into 

two categories, namely the algorithm techniques and the data manipulation techniques. The first type 

of approaches, i.e., the algorithm based techniques, either propose to build new or improve existing 

algorithms to attain superior classification of imbalanced datasets. Consider the cost-sensitive 

learning methods as an example, where the method maximizes the cost functions of the data to 

increase the accuracy of class prediction. The intention behind these frameworks is that practical 

applications do not treat misclassified instances equally. These methods typically evaluate a cost 

matrix and utilize it in training the model. A relevant approach to cost-sensitive training is to modify 

the bias to give an advantage to the minority class (Unsworth & Coghill, 2006). Some frameworks 

using this approach do show the likelihood of improving the classification accuracy, but they are 

restricted to few application domains.  

 



The second type of approaches that directly manipulate the data also have some notable frameworks. 

The methods of oversampling and downsampling the data are noteworthy to mention here (Yan, Liu, 

Shyu, & Chen, 2014). There are numerous implementations of these sampling based frameworks 

where the authors argue against whether oversampling has a better outcome than downsampling 

(Batista, Prati, & Monard, 2004). Oversampling methods reproduce duplicate or near duplicate 

positive data instances to balance out the dataset. Zhang et al. proposed a notable oversampling 

technique (Zhang & Wang, 2011; Chawla, Bowyer, Hall, & Kegelmeyer, 2002) but this method is 

potentially prone to overfitting. Alternatively, downsampling chooses from the pool of negative data 

instances to develop a model with a similar number of positive instances. There is an obvious 

advantage when only a subset of the majority class is used, but this also results in the loss of 

information because several critical instances may be ignored. Liu et al. came up with two methods to 

remove this disadvantage (Liu, Wu, & Zhou, 2009). The first one is called “Easy Ensemble” that 

samples various subsets within the majority class and the model is set to learn from each of these 

subsets. The output classification is an ensemble of these intermediate models. The second method is 

the “Balance Cascade” technique where the model learns in sequences. In each sequence, the 

accurately classified samples are removed from the next sequence. 

 

Recent work on deep learning 

With famous successful stories such as the Google AlphaGo platform (AlphaGo website), deep 

learning networks have proven to have a significant impact in a variety of research domains. It was 

originally evolved from the concept of artificial neural networks (ANNs), but is capable of achieving 

much higher performance metrics than some existing competing machine learning methods. Several 

deep learning methods have sprouted from the initial ANN concepts such as the deep belief network 

(DBN), restricted Boltzman machine (RBM), deep neural network (DNN), and many others (Wan et 

al., 2014). One of the promising off-shoots of the Deep Neural Networks approaches is called the 



convolutional neural network (CNN) (Swietojanski, Ghoshal, & Renals, 2014; Chen, Xiang, Liu, & 

Pan, 2014; Mao, Dong, Huang, & Zhan, 2014; Ji, Xu, Yang, & Yu, 2013; Jin, Fu & Zhang, 2014). 

CNN is a discriminatory deep learning architecture that has gained much popularity in computer 

vision and object recognition. CNN is composed of modules and each module is mainly made up of 

two layers, namely the convolutional layer and the pooling layer. The convolutional layer shares 

many weights and passes its output to the pooling layer, and the pooling layer then subsamples the 

output and effectively cuts down the data rate. Although CNNs are the preferred choice in various 

domains, they have yet to challenge the class-imbalance problem. Therefore, in this paper, we 

implement CNNs on a highly class imbalanced dataset and strive to improve the performance over the 

conventional state-of-the-art methods. 

 

Since AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) won the top-5 test error rate in the ILSVRC 

2012 contest on ImageNet, CNN is proven to suppress the traditional ensemble framework with 

classical features like sparse SIFT and pyramid pooling. Correspondingly, a deep and large CNN was 

trained to classify more than one million high-resolution images in the ImageNet LSVRC-2010 

competition into a thousand different classes, and a variant of the well trained model was entered to 

the ILSVRC-2012 contest. Two years later, the width and depth of CNN were increased while 

keeping the computational budget constant by carefully crafted designs in Caffe (Jia et al., 2014). The 

quality of the 22 layers deep network, GoogLeNet (Szegedy et al., 2014), was assessed in the 

competition of detection and classification. With CNN becoming more of a commodity in the 

computer vision field, many research groups attempted to improve the original architecture of 

AlexNet. Simonyan et al. (Simonyana & Zisserman, 2014) from Oxford’s renowned Visual Geometry 

Group (VGG) also got good results in ILSVRC 2014 by increasing the CNN depth with very small 

convolution filters and showed a significant improvement by pushing the depth to 16–19 weight 

layers. Yet, the overall trend of CNN is making the networks deeper and deeper. In a popular recent 



work, ResNet (He, Zhang, Ren, & Sun, 2015), the neural network depth is eight times larger than 

VGG. With the proposed residual learning framework and substantially deeper network, they won the 

1st place on the ILSVRC 2015 classification task. Although CNN with thousands of layers have been 

developed recently, very few of them focus on the imbalanced datasets. 

 

With the rapidly growing of neural network depths and modern multimedia datasets, more 

computational power and efficient clusters are needed. Several data processing engines are turning 

towards generalized MapReduce frameworks (Dean & Ghemawat, 2008). Apache Spark (Zaharia et 

al., 2012) was able to develop an open-source distributed processing engine called Spark that 

increases the capability of conventional MapReduce use-cases. This extension has contributed to two 

common classes, the iterative algorithms (i.e., machine learning graphs) and the interactive data 

mining multiple computation chains. Spark naturally dovetails into Hadoop ecosystems with the 

HDFS storage and Yarn or Mesos as the managers. Yahoo developed a spark package that brings deep 

learning to Hadoop and Spark clusters named CaffeOnSpark (CaffeOnSpark website) which supports 

neural network model training, testing, and feature extraction as a distributed extension of Caffe. 

Though a small number of this kind of tools were proposed in the past two years, most of them are 

still in the development stage with unstable functions and cannot be directly applied to the current 

CNN frameworks. 

 

Convolutional neural network (CNN) structures 

As to be introduced in this section, the deep learning frameworks like CNN have been proven to be 

one of the most significant developments recently and is famous for its ability to create multiple 

levels of training and abstraction that help to understand the data easily. This section discusses how 

the CNN framework can be utilized for the multimedia class-imbalanced datasets. 

 



CNN is a subdivision of the deep neural network chain in deep learning that, at the root, are variants 

of multilayer perceptron. CNNs are configured to utilize minimum resources in preprocessing (Hastie, 

2005; LeCun, Bottou, Bengio, & Haffner, 1998). This is done with two techniques: the first is to limit 

the links among the invisible sections and the input section so that each invisible section links to only 

a subset of the input called feature maps. The motivation behind the technique of having locally 

linked networks is taken from the visual cortex where neurons also have local receptive fields (Kanel, 

2009). The second technique is to develop simplified computations of images. Since natural images 

have the tendency of being stationary, the statistics of the different regions of natural images are 

similar. The second technique takes the advantage of this, utilizes a random subset of trained features, 

and convolves them to acquire feature activations of the remaining image. Then these acquired 

features can be used either directly or as ensemble statistics for classifying the data. The ensemble 

statistics have the characteristics of being comparably very low dimensionality and not overfitting the 

model as well. 

 

Generally speaking, a CNN model consists of three kinds of layers, which are convolutional, pooling, 

and fully connected layers (Bouvrie, 2006). The convolutional layer is composed using several 

feature maps as defined in Equation (1). The feature map of the lth layer and jth feature batch ௝ܺ
௟ is 

evaluated by convolving the feature maps of its preceding layer ௝ܺ
௟ିଵ. The convolution process uses 

the activation function f with trained kernels ܭ௜௝
௟  and an additive bias ௝ܾ

௟. The first layer ௝ܺ
ଵ 

corresponds to the input data, a logistic function is selected as the activation function f that 

corresponds an assortment of the input maps. 

௝ܺ
௟ ൌ ݂ ቀ∑ ௜ܺ

௟ିଵ ∗ ௜௝ܭ
௟

௜∈ெೕ
൅ ௝ܾ

௟ቁ , ݈ ൒ 2; (1) 

 

Here, a feature map is divided into several batches ܯ௝, where ܯ௝ represents the data batches and i is 



the index of each those batches. The pooling layer takes in the input features as given in Equation (2) 

and outputs a subsampled version of it. Here, the operation “pool” stands for a pooling procedure that 

evaluates the ensemble statistics of the input maps, ߚ௝
௟ depicts the multiplicative bias, and ௝ܾ

௟ shows 

the additive bias. The pooling layer is normally placed after each convolutional layer and it typically 

is designated as a mean or max pooling procedure. 

௝ܺ
௟ ൌ ݂൫ߚ௝

௟݈݋݋݌ሺ ௝ܺ
௟ିଵሻ ൅ ௝ܾ

௟൯, ݈ ൒ 2.  (2) 

 

The fully-connected layer is developed to be the high-level reasoning layer in the network. It is placed 

after or close to the terminal layers of the neural network. All neurons from the earlier layers are then 

connected to each neuron in the fully-connected layer. 

 

Proposed imbalanced multimedia concept retrieval framework: CNN with 

bootstrapping 

Our deep learning framework is contrasting from the negative bootstrap framework developed in (He, 

Zhang, Ren, & Sun, 2014) that joins random sampling and adaptive selection to recursively search the 

related negatives. The proposed bootstrapping sampling technique integrates oversampling with 

decision fusion to improve the CNN’s classification accuracy on multimedia data that may or may not 

have skewed class attributions. 

 

Even after the tremendous success of deep learning frameworks, to the best of our knowledge, only a 

handful of papers target the challenging problem of skewed class multimedia data. As a matter of fact, 

directly applying deep learning methods on imbalanced data ends in a very bad classification 

accuracy. This is illustrated by the empirical study results comparing the balanced and imbalanced 

datasets in Figure 1 where x-axis is for the number of training iterations while y-axis is for error rate, 

and the error rate of the prediction is compared to the increasing number of iterations of a CNN deep 
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Conventional bootstrapped samples have the imbalanced dataset with ݊ ≫ ݉, where n and m are the 

numbers of negative and positive data instances, respectively. Our proposed framework generates 

batches of sneg and spos data instances to balance out the ratio ݎ ൌ  ௣௢௦, where sneg is the number ofݏ/௡௘௚ݏ

negative data instances and spos the number of positive ones. Therefore, totally M batches will be 

generated, where: 

ܯ ൌ ඌ ௡

௦೙೐೒
ඐ     (3) 

 

Another way to see it is when n is not exactly divisible by sneg, any remaining negative data instances 

will be removed in the training stage. Since the total count of negative data instances n in the training 

set is large and the batch size ݏ ൌ ௡௘௚ݏ ൅  ௣௢௦ is typically small (i.e., resulting in a small sneg), theݏ

removed negative data instances become negligible comparative to the data instances used in the 

training stage. Then from the m positive data instances, one positive data instance is randomly chosen 

spos times and combined with sneg negative data instances for each batch. This process is repeated I 

times to produce the batches in each learning repetition until the error rate converges. This random 

stochastic process assures an equivalent probability for each positive data instance to be selected and 

trained with various negative data instances and eventually avoid overfitting. Table 1 illustrates the 

discussed process. In each repetition process, the bootstrapping process produces a pseudo balanced 

training set from the original imbalanced dataset, which can be then used by the deep learning model 

for learning. 

 

Table 1. Proposed module of CNN with bootstrapping. 

PSEUDO CODE OF CNN WITH BOOTSTRAPPING  
1.  Split the training set into a positive set pos and a negative set neg 
2.  Divide neg into M batches, each with sneg negative data instances 
3.  for 1:I 
4.     for 1:M 
5.         for 1:spos 
6.             randomly pick one data instance from pos; 
7.         end for; 



8.         combine the data instances in pos and neg together; 
9.      end for; 
10.    Train a CNN model; 
11. end for; 
12. end; 

 

Let the size of each input be ݉ ൈ݉ such that a four mid-layer CNN forms as depicted in Table 2, 

where kL represents the number of mask neurons applicable on a given subgroup of input values and 

݊௅ ൈ ݊௅ indicates the size of each mask in the Lth convolution layer. The output from the Lth 

convolution layer is given to the Lth pooling layer and it is split into a group of non-overlapping 

rectangles of size ݌௅ ൈ  ,௅, where the pooling operations are applied for downsampling. Furthermore݌

the bootstrapping method explained earlier is then used to generate N batches of balanced training 

instances that are given to the first layer of CNN in iterations. The input layer is followed by two 

convolutional layers, and then followed by their respective mean pooling layers. The first 

convolutional layer produces the inner product of the ݇ଵ ൈ ሺ݊ଵ ൈ ݊ଵሻ masks and passes the output to 

the first mean pooling layer. Mean pooling layers summarize the outputs of the neighboring subsets 

of masks in the same kernel map. The output of the pooling layer is passed as the input to the second 

convolutional layer. This is followed by the mean pooling layer using the same process as mentioned 

earlier but with different mask sizes. The size of the vector of the final CNN layer denotes the number 

of classes attributed to the data. Our experiment performs binary classification, and thus the size is set 

to 2. 

 

Table 2. Training parameters for CNN. 

Layer  Layer size Output size 
Input (m*m)   
Convolution 1 k1*n1*n1 k1*(m-n1+1)*(m-n1+1) 
Pooling 1 p1*p1 k1*(m-n1+1)/p1*(m-n1+1)/p1 

[let m2=(m-n1+1)/p1] 
Convolution 2 k2*n2*n2 k2*(m2-n2+1)*(m2-n2+1) 
Pooling 2 p2*p2 k2*(m2-n2+1)/p2*(m2-n2+1)/p2 
Output  2 



 

Finally, th

receiving

method c

imbalanc

effectiven

 

Fig

 

Integra

The traini

month to 

observed 

the raw d

approach 

This key 

substantia

he conseque

g the highest 

an be observ

ed dataset of

ness in the co

igure 2. [Tot

tion of CN

ing time of C

train 1755 v

in the literat

data at the inp

by using the

process here

ally reduce t

ent convoluti

score will b

ved from the

f Figures 1(c

onvergent pr

(a) 

tal error rate

NN and low

CNN is noto

videos to ach

ture that trai

put layer. To

e low-level m

e is that we p

the m value (

ion masks an

e attributed 

e prediction e

c) and 1(d), r

rocess. 

 

es convergen

boots

w-level fea

orious for bei

hieve sufficie

ining a deep 

o improve th

multimedia f

propose to fe

(18 in the pr

nd weights a

to the test da

error rates sh

respectively

    

 
nce generate

trapping me

atures 

ing computa

ent performa

learning me

he efficiency

features that

eed the low-l

oposed expe

are used for c

ata instance.

hown in Figu

y. The descen

 

ed from imba

ethod] 

ationally taxi

ance metrics

ethod is subs

y of CNN, we

t are much sm

level feature

eriment) and

classification

. The benefit

ure 2 as it is

nding error r

(b) 

alanced data

ing. For exa

s (Karpathy e

stantially lon

e first propo

maller than t

es into the C

d greatly imp

n and the cla

t of the boot

s applied to t

rates illustrat

asets using o

mple, it took

et al., 2014)

nger if provid

ose a differen

the raw sign

CNN directly

prove the pro

ass 

tstrapping 

the 

te the 

 

our 

k one 

. It is 

ded with 

nt 

nal data. 

y to 

ocessing 



times. These low-level features are composed of Haar (Verma & Maru, 2009), HOG (Yan et al., 

2014), HSV, YCbCr (Sural, Qian, & Pramanik, 2002), and CEDD (Chatzichristofis & Boutalis, 2008). 

These are chained into a feature vector which is then transformed to a matrix using PCA (Principle 

Component Analysis). This transformation is required because CNN does not support one-

dimensional vectors and the features are fed as an 18 by 18 matrix. The sizes of the matrix and masks 

in Table 3 are decided based on empirical studies and could be adjusted with different feature 

dimensions and datasets. 

 

The internal deep learning process of the CNN is similar to what is described in the previous section, 

except for the pooling layers that are removed because the low-level features are not necessarily 

stationary in every iteration. Table 3 illustrates the detailed training parameters used in the proposed 

framework. Since we have earlier reduced the dimensions of the input features, a relatively small 

mask size can be applied, in comparison to that in (CaffeOnSpark website). 

 

Table 3. Training parameters. 

Layer Mask size Output Size
Input (18*18)   
Convolution 1 6*3*3 6*16*16 
Convolution 2 9*3*3 9*14*14 
Output  2 

 

Deployment of the proposed framework on a Spark cluster  

A shortcoming of using low-level features is potentially losing information. Thus, another idea of 

making an efficient framework is to build it on top of a big data processing system. In this paper, we 

built our model on top of our dedicated Spark cluster. The cluster is running most recent versions of 

the required distributed big data infrastructure, i.e., Apache Hadoop 2.7.3 with Yarn and Apache 

Spark 2.0. The developed Spark cluster serves as the primary test bed cluster for deep learning and 
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in the cluster to utilize the cluster to its maximum capacity. It is recommended that a maximum of 2 

to 3 tasks are to be run on a CPU core at an instance of time. The number of tasks executed in parallel 

on a node is equal to the number of cores in the corresponding node. Spark automatically sets the 

number of map tasks to run on each file according to the number of partitions present. A partition is 

defined by each file which is loaded from the HDFS. Executors were started on each node of the 

cluster to perform the tasks. 

 

Deep learning methods are notorious for computationally expensive and impractical for streaming 

data. Our attempt to overcome this challenge is to use a distributed environment and Spark. By the 

empirical testing and evaluation, it was observed that the same neural network implementation using 

Java in Apache Spark 2.0 achieved 400% speed improvement over Matlab 10 performed on the same 

cluster. 

 

There are a lot of use-cases where multi-core or GPU based processing or conventional HPC systems 

may be significantly faster than any Spark implementation. We have to take all the feasibility cases 

into account and argue our case of building a system to make positive forward progress in our 

research. Since Spark is only good with recursive statements and streaming inputs, in the case of 

classifying data, MapReduce will probably do a competitive job to Spark due to the fact that there is 

only one time read involved from the hard disk. 

 

Although the Spark clusters are proven to be suitable for recursive computing, how to distribute the 

neural network training remains as a challenging issue. Since all parameters in a certain layer are 

updated after training each mini batch, most popular neural network models cannot be deployed on 

distributed computing clusters to run parallel processing. Another problem to deploy the neural 

network frameworks on Spark is that Spark supports Scala and Java stably, but only partially supports 
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In this study, we identify the best available features to identify the skewed and imbalanced classes and 

improve the classification of the imbalanced datasets. It is an industry best practice to start with the 

current best features and further improve the performance by processing the skewed and imbalanced 

classes. Recently, those features extracted from pre-trained deep learning models are proven to 

outperform traditional low-level features. In this paper, we use a pre-trained and fine-tuned CNN 

model on the ImageNet data, Alexnet (Krizhevsky, Sutskever, & Hinton, 2012), for keyframe feature 

extraction. The Alexnet structure is well trained and proven with great performance. It contains five 

convolutional layers and three fully-connected layers and our CNN features are extracted from all the 

training and testing keyframes from the output layer, i.e., the 8th layer with one-thousand dimensions. 

These features are finally fed to a neural network with two fully connection layers, where the first 

layer contains 100 neurons and the second one is composed of 10 neurons. 

 

Performance measurement 

In general, a classifier is evaluated by a confusion matrix as illustrated in Table 4. The columns are 

the predicted class and the rows are the state of nature (actual class). In the confusion matrix, TP 

(True Positives) and FP (False Positives) represent the numbers of positive data instances that are 

correctly or incorrectly classified, respectively. Similarly, TN (True Negatives) and FN (False 

Negatives) indicate the numbers of negative data instances being correctly or incorrectly classified, 

respectively. For performance comparison, the precision and recall metrics (Buckland & Gey, 1999) 

are commonly used and are derived from the confusion matrix in Table 4 and Equations (4) and (5). 

 

Table 4. Confusion Matrix. 

 
Predicted 
Positive 

Predicted 
Negative 

State of nature 
Positive 

True Positives 
(TP) 

False Negatives 
(FN) 

State of nature False Positives True Negatives 



Negative (FP) (TN) 
 

The recall and precision goals can often be conflicting, since the increase of true positive data 

instances for the minority class may also increase the number of false positive data instances, which 

will reduce the precision. For imbalanced data classification, the recall value is normally considered a 

more important criterion because it is more desirable to detect as many interesting events as possible, 

even at the expense of adding a reasonable number of false positive data instances. For example, 

users often want to locate all possible frauds in banking operations followed by a manual double 

check to root out false alarms, instead of missing true scams. In addition, F-score, also known as F1 

measurement or F-value, captures the trade-offs between precision and recall, and is considered an 

objective and ultimate quality metric of a classifier which is defined in Equation (6). 

݊݋݅ݏ݅ܿ݁ݎ݌ ൌ ்௉

்௉ାி௉
    (4) 

݈݈ܽܿ݁ݎ ൌ ்௉

்௉ାிே
    (5) 

ܨ െ ݁ݎ݋ܿݏ ൌ 2 ൈ ௣௥௘௖௜௦௜௢௡ൈ௥௘௖௔௟௟

௣௥௘௖௜௦௜௢௡ା௥௘௖௔௟௟
  (6) 

 

Evaluation on the UCF11 dataset 

First, our proposed model is tested on a relatively balanced video dataset, UCF YouTube Action 

(UCF11) dataset (Liu, Yang, & Shah, 2009), to prove the efficiency of feeding the low-level features 

to the CNN models.  UCF11 includes videos collected from YouTube with various problems like non-

static background, low video quality, camera motions, poor illumination conditions, etc. It is a 

relatively balanced dataset as compared to the TRECVID dataset and contains 11 action categories: 

basketball shooting, biking/cycling, diving, golf swinging, horseback riding, soccer juggling, 

swinging, tennis swinging, trampoline jumping, volley ball spiking, and walking with a dog. This data 

set is very challenging (Liu, Luo, & Shah, 2009) due to the large variations in camera motion, object 

appearance and pose, object scale, viewpoint, cluttered background, illumination conditions, and etc. 
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Table 5 shows the confusion matrix of applying our framework to the UCF11 dataset. Here, “Bas” 

denotes basketball shooting, “Bik” is for biking/cycling, and so on. The vertical labels are the ground 

truth, i.e., the actual labels; while the horizontal side shows the prediction labels. The number in each 

grid shows the percentage of the data instances. For instance, the number “85” shows that 85 percent 

of the ‘horseback riding’ testing instances are correctly identified; while the number “1” shows that 1 

percent of the horseback riding data instances are misclassified as soccer juggling. Table 6 shows the 

performance comparison between our approach and three other state-of-the-art methods. Specifically, 

(Perez et al., 2012) used the combination of Histograms of Gradients into orientation tensors and 

applied SVM as the classifier. In (Liu, Luo, & Shah, 2009), motion features based on the ROI 

(Region of Interest) estimation and AdaBoost were used to integrate all the heterogeneous yet 

complementary features for recognition. In (Mota et al., 2014), SVM was applied to a tensor motion 

descriptor with optical flow for action recognition. 

 

Table 5. Confusion Matrix of the UCF11 Dataset. 

  Bas Bik Div Gol Hor Soc Swi Ten Tra Vol Wal

Basketball shooting 55 5 3 8 1 1 2 13 0 11 1 

Biking 1 73 0 0 10 0 3 3 2 2 5 

Diving 5 2 76 1 1 1 2 1 1 6 3 

Golf Swing 12 1 1 82 0 1 2 2 0 0 0 

Horse Riding 1 6 1 0 85 1 1 1 1 0 6 

Soccer Juggling 4 1 1 4 5 63 6 5 1 4 5 

Swinging 1 4 4 1 1 1 79 0 4 3 2 

Tennis Swing 8 1 1 8 4 3 2 72 1 1 1 



Trampoline Jumping 1 0 1 0 2 9 8 1 77 1 1 

Volleyball Spiking 7 1 2 1 0 2 1 8 0 79 0 

Walking with a dog 2 7 2 3 20 1 2 5 2 0 54 

 

As shown in Table 6, our approach achieves the best accuracy rate among all the methods. This 

experiment clearly proves that while our framework aims to address the challenges caused by a highly 

imbalanced data distribution, it is also very effective in classifying relatively balanced datasets. 

 

Table 6. Result Comparison for the UCF11 Dataset. 

Group Accuracy
Perez et al. (2012) 68.9% 

Liu, Luo, & Shah (2009) 71.2% 
Mota et al. (2014) 72.7% 
Our Framework 72.8%

 

Experimental results on the TRECVID dataset 

In order to demonstrate the effectiveness of our proposed framework for imbalanced multimedia data 

classification, the TRECVID dataset (Awad et al., 2016), a large-size benchmark dataset with highly 

skewed data distribution, is used in the experiment. In particular, the IACC.1 dataset from the 

TRECVID 2015 datasets (Over et al., 2015) is used. The semantic indexing (SIN) task in TRECVID 

2015 aims to recognize the semantic concept contained within a video shot, which can be an essential 

technology for retrieval, categorization, and other video exploitations. Here, the concepts refer to the 

high-level semantic objects such as a car, road, and tree. Figure 6 shows four sample keyframes with 

the labeled concepts. There are several challenges such as data imbalance, scalability, and semantic 

gap. As a result,  traditional deep learning approaches, including CNNs, often perform poorly on the 

TRECVID dataset due to the problem of under-fitting, huge diversity, and noisy and incomplete data 

annotation (Sun et al., 2013; Snoekyz et al., 2013). Please note that the data imbalance degrees of 
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2009), in imbalanced data classification, the recall metric is considered more important than precision 

and the F-score represents the trade-off between precision and recall. As shown in Figures 7 and 8, 

the recall and F-score values of our proposed framework using the low-level features and the features 

from the pre-trained CNN models are compared with the scores from TiTech (Tokyo Institute of 

Technology) that achieved the best performance in the semantic indexing task several times in the 

past years (Inoue et al., 2011; Inoue & Shinoda, 2012). 

 

In case of the TRECVID confidence score evaluation, we have to work with the unstructured key-

value pairs of the TRECVID video shots. There is a need to store the massive TRECVID multimedia 

data, in the order of several Terabytes, with redundancy over the years since 2003 until recent. We 

have stored the TRECVID video frames as well as the extracted confidence scores that are 

continuously used in our models to compare with previous datasets or to train for the recent 

competition. The photos and video frames can be stored in the HDFS and processed using the Spark 

engine and the confidence scores can be assigned and stored back in the HDFS. The resultant 

confidence scores are unstructured key-value pairs that need to be stored in the HDFS based 

redundant data store and accessed for data mining processing. Therefore, Spark befits as a perfect 

candidate solution to our problem. 

 

From the results drawn on Figures 7 and 8, our F-scores generated from the low-level features are 

higher than those of the TiTech group for two thirds of the 84 concepts; while the results by those 

features from the pre-trained CNN models perform better than four fifths of the TiTech scores. For the 

recall measurement, both of our frameworks generate better results for almost every concept. The 

only exception is when using the low-level features, they may fail to identify a true positive data 

instance due to the noisy data annotations and information lost in feature extraction. It is also worth 

noting that for 50 concepts, the TiTech group can only locate zero or one true positive data instance; 



while our approach reaches more than 0.628 recall value on average. This clearly demonstrates the 

effectiveness of integrating CNNs with the bootstrapping strategy in our proposed framework for 

imbalanced multimedia data classification, especially on the fact that the study in (Batista, Prati, & 

Monard, 2004) showed that the performance of CNNs is far worse than all other classifiers the 

authors tried on the TRECVID dataset. 

 

 

Figure 7. [Recall comparisons on all imbalanced concepts] 
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Figure 8. [F-score comparisons on all imbalanced concepts] 

 

Conclusions and future work 

In this paper, we proposed to extend the convolutional neural networks based deep learning technique 

by incorporating a bootstrapping algorithm. Moreover, to achieve faster computation speeds and 

better handling of unstructured key-value pairs of the TRECVID video data, we harnessed the power 

of Apache Spark. Our Spark system is implemented on a dedicated Spark cluster developed solely for 

the computational needs of our research group. In the bootstrapping stage, pseudo balanced training 

batches are rendered and inserted into the CNN for classification. The experimental results establish 

the effectiveness of the proposed framework for accurately classifying highly imbalanced multimedia 

data. Different from many existing methods in deep learning that take the required raw media data in 

the input layer, our deep learning framework works efficiently on the low-level features, which 

largely reduces the required training time in deep learning. Furthermore, a computational boost is 

achieved with the power of distributed computing using Apache Spark and better information 

retrieval results are generated by the features from the pre-trained CNN models. 
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Though we propose a powerful imbalanced big data processing system using Spark in this paper, 

running deep learning algorithms on GPU is much more efficient than on CPU. Therefore, it is better 

to extend the system for accelerating deep learning on Spark applications using GPUs. Since GPUs 

provide both high-computation capabilities and high-memory bandwidth, they can be used to 

accelerate both computation-intensive and memory-intensive Spark jobs. In the future, we plan to 

enhance our system and run deep learning applications on distributed GPUs with Spark. 
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