
A Distributed Agent-Based Approach to Intrusion Detection Using the
Lightweight PCC Anomaly Detection Classifier

Zongxing Xie, Thiago Quirino, Mei-Ling Shyu
Department of Electrical and Computer Engineering
University of Miami, Coral Gables, FL 33124, USA

zxie@umsis.miami.edu, grilocanibal@yahoo.com, shyu@miami.edu

Shu-Ching Chen LiWu Chang
Distributed Multimedia Information Center for High Assurance

System Laboratory Computer Systems
School of Computing and Information Sciences Naval Research Laboratory

Florida International University Washington, DC 20375, USA
Miami, FL 33199, USA lchang@itd.nrl.navy.mil

chens@cs.fiu.edu

Abstract

In this paper, a novel agent-based distributed intrusion
detection system (IDS) is proposed, which integrates the
desirable features provided by the distributed agent-based
design methodology with the high accuracy and speed re-
sponse of the Principal Component Classifier (PCC). Ex-
perimental results have shown that the PCC lightweight
anomaly detection classifier outperforms other existing
anomaly detection algorithms such as the KNN and LOF
classifiers. In order to assess the performance of the PCC
classifier on a real network environment, the Relative As-
sumption Model together with feature extraction techniques
are used to generate normal and anomalous traffic in a LAN
testbed. Finally, scalability and response performance of
the proposed system are investigated through the simulation
of the proposed communication architecture. The simula-
tion results demonstrate a satisfactory linear relationship
between the degradation of response performance and the
scalability of the system.

1. Introduction

In the last couple of years, while the cost of informa-
tion processing and Internet accessibility has fallen greatly,
network systems have played an increasingly critical role in
modern society. The widely introduction of the web-based
applications leads to the interconnection of almost all the

computers in the world in a global network that facilitates
communications among people. At the same time, as in-
creasingly sensitive data are being stored and manipulated
through the Internet co-existing with the fact that various
intrusions are bringing serious damage to people, corpora-
tions, and the whole society, network security has become
an extremely vital issue and has strongly attracted both re-
searchers and commercial organizations. Accurate and effi-
cient intrusion detection systems (IDSs) are largely needed
to safeguard the network systems and crucial information.

There are numerous intrusion detection algorithms,
frameworks and techniques. Generally speaking, the ex-
isting intrusion detection methods could be categorized into
two main types: misuse detection and anomaly detection
[4]. Misuse detection, which is based on signature modeling
of known attacks [11], has the advantage of higher detec-
tion accuracy in detecting known attacks while its most ob-
vious shortcoming is its incapacity of detecting previously
unobserved attacks. On the other hand, anomaly detection,
which is based on signature modeling of normal traffic [10],
has the advantage of detecting new types of attacks [7],
while it suffers from high false alarm rates. IDSs have un-
dergone rapid development in both power and scope in the
last few years. There are various types of architectures for
IDSs. [21] summed up these systems into four main cate-
gories: monolithic, hierarchic, agent-based, and distributed
(GrIDS) systems. However, much improvement could be
done for these architectures, as the nature of the artificial
attacks keeps changing.

Recently, the agent concept has been widely used in dis-
tributed environments because it provides many favorable
characteristics including scalability, adaptability, graceful
degradation of service, etc. over the non-agent based IDSs
[12]. Most of the distributed agent-based IDSs introduce
more traffic into their residing network, and the communi-
cation protocol between various entities is also an important
aspect that has to be considered. At the same time, most
of the designed agent-based IDSs [6] require comparatively
high processing power in local machines to run the agents
and other supportive software. Hence, a lightweight agent
system with low network traffic generation requirements is
needed.

In this paper, a distributed IDS with agent technology
is proposed, where a set of classification agents communi-
cate with each other and with the lower level agents to ac-
quire a global scope of the security state of the network. It
integrates anomaly detection and misuse detection, and fo-
cuses on the most common scenario of local machines hav-
ing comparatively low processing power. It intends to detect
heterogeneous intrusions in the network, and it seeks mul-
tiple sources of information to extract features for intrusion
detection. There are two levels of agents in the proposed
system. One is the host-agent layer, whose major function
is to execute an anomaly detection algorithm and send the
detected abnormal data instances to the upper-level agent.
The Principal Component Classifier (PCC) developed in our
earlier studies [17][18] is selected to take on this task due to
its high detection rate and quick response. Our experimen-
tal results demonstrate that PCC outperforms the K-nearest
neighbor (KNN) method [20] and LOF algorithm [5] with
high detection rates and low false alarm rates. The second
layer is the classification-agent layer, whose major function
is to execute misuse detection on abnormal data instances
supplied by the lower layer and notify the specified types of
attacks to the host agents and other classification agents in
the network.

This paper is organized as follows. Section 2 presents
our proposed agent-based distributed IDS. The proposed
Relative Assumption Modeling and feature extraction tech-
niques together with the performance comparison among
PCC, KNN and LOF are described in details in Section 3.
Section 4 demonstrates analysis results on the communica-
tion among different classification agents and host agents.
Conclusions are given in Section 5.

2 The proposed agent-based distributed IDS

Our proposed agent-based distributed IDS consists of a
host layer and a classification layer. Figure 1 illustrates the
proposed IDS and the LAN testbed network setup.

Figure 1. Architecture of the proposed sys-
tem and LAN testbed network setup

��� ���� ��	
�

The host layer consists of lightweight host agents that
run as background processes in end-user machines. These
agents collect information about the network connections
in their hosts and classify these connections using the PCC
classifier. Each host agent is connected to an upper-layer
agent called a classification agent, to whom the host agents
report connections found to be abnormal by PCC. Host
agents are mainly concerned with detecting abnormal ac-
tivities occurring in their hosts and properly responding to
them. Virtually, every machine in a network can be con-

sidered as a host agent. Since every connection in a host,
whether normal or abnormal, is analyzed for abnormality,
the host agent can keep the information of a few normal
connection instances and pass it along with abnormal con-
nection instances to the upper layer classification agents to
be saved in a database so that the classifier can be re-trained
at a later time.

PCC, which has proven to be a fast, highly accurate,
lightweight classifier [17][17] suitable for the implementa-
tion of the lightweight agents required by the limited pro-
cessing power end-user machines, was chosen as the classi-
fier at this layer. PCC is derived from Principal Component
Analysis [9], a mathematical technique that tries to capture
the variability in a data set into the so-called Principal Com-
ponents. Principal Components are perpendicular vectors
that point in the direction of the largest variances found in
the distribution of a data set, and can be utilized as coor-
dinate axes to which the original data set can be projected
upon. Each principal component describes a certain per-
centage of the total variability found in the data set, and
thus contains useful information about the distribution of
the data. Upon training a PCC classifier with an instance set
of normal connections, the classifier differentiates very well
between normal and abnormal connection instances. The
PCC classifier training time and classification time are con-
siderably shorter than other methods such as KNN and LOF,
and our experiment results demonstrate that PCC achieves
higher classification accuracy than that of KNN and LOF at
similar false-alarm rates.

��� �����
����
�� ��	
�

In the classification layer, the classification agents attend
to the concern of host agents and their suspicion of a possi-
ble attack. Multiple host agents connect to a single clas-
sification agent and rely on their respective classification
agents to classify the abnormal connection instances found
in their hosts through PCC into known attack types, a task
performed by the classification agent through a misuse de-
tection algorithm. This is important as the attack type will
determine the proper response of the IDS to the intrusion.
Research effort is currently invested on the development of
a suitable misuse detection algorithm at the classification
agents, and hence in this paper, our focus is given to other
aspects of our proposed architecture. Agents in this layer
are assumed to be running in dedicated machines capable
of delivering the processing power required to handle all
classification requests of their host agents, in addition to
handling the communication burden of warning other fel-
low classification agents of a possible network attack in
progress in their node. This communication between clas-
sification agents is important as other classification agents
can prevent or lessen the effects of a possible attack by man-

aging resources in their nodes that they expect to be affected
by the incoming attack such as bandwidth, communication
ports, and connection authorization.

��� ������
���
�� �
��

� ��� ��	
��

Communication is an important factor in the design of
an effective distributed agent-based system. In our pro-
posed system, a message passing protocol through TCP/IP
Security Server Lever (SSL) is used for the implementa-
tion of secure communication among agents. Every possi-
ble communication event that can arise between the layers
was taken into consideration in the design of our proposed
communication protocol. We propose a standard message
composed of the following four descriptive fields and a pay-
load space that can be used to carry the parameters of the
different message types:

1. Message ID: A message number that the sending agent
provides and uniquely describes that message.

2. Source Agent: The IP address of the source agent that
can be used for verification and reply.

3. Destination Agent: The IP address of the destination
agent so that an agent can verify that the incoming
message was truly intended for it.

4. Message Type Number: A number describing what the
message is about: a request for classification, a warn-
ing of a possible attack, an acknowledgement, among
other possible events.

5. Payload: The Message Type Number field described
above identifies what the message is about. Suppose
the message type number identifies a request from a
host agent for classification of an abnormal connec-
tion instance by a classification agent. The abnormal
instance information would go in the payload section.
Thus, the payload section is structured according to the
requirements of the message type and carries different
parameters and fields depending on the message type
number.

Every communication event is finalized by an acknowl-
edgment (ACK) message. An agent, upon receiving a mes-
sage, sends an ACK message to the source agent to inform
the receipt and further processing of the message.

3 Host agents

The major function of the host agent layer is to execute
anomaly detection and send the abnormal connections to the
upper level. Different anomaly detection systems may use
different types of data in the process of intrusion detection.

Depending on the quality of the data, anomaly detection
systems behave differently in detecting intrusions. There-
fore, it has become a vital aspect for anomaly detection to
identify suitable data types. Recently, most anomaly de-
tection research is based on KDD [2] or MIT [1] data sets,
both of which provide labeled or separate well-predefined
data sets including Normal, DoS, Probe, R2L, U2R, etc. It
is unavoidable in research studies to make use of only some
familiar attack models to represent all anomaly data mod-
els for either training or testing, which leads to the fact that
the studies always make hasty generation to analyze and es-
timate accuracy, efficiency, functions, techniques or other
criteria of various methods, algorithms and frameworks. At
the same time, acquiring real network intrusion data is dif-
ficult due to security, privacy and other realistic issues. In
order to avoid this dilemma, an agent-based distributed net-
work testbed is developed and employed to simulate the real
network environment based on our proposed Relative As-
sumption Modeling.

��� �
���
�
 �������
�� ���
�
��

It is a basic fact that both the so-called normal and ab-
normal data sets are relative concepts, which are decided by
network bandwidth, server processing capability, average
network load, and other factors. The same type of network
connections may be labeled distinctly among different kinds
of networks. Furthermore, it is highly possible that the cur-
rent increasing abnormal data sets would be considered as
normal in the near future due to the rapid development of
networks, computers, and their relative techniques.

In an attempt to produce both the normal and relatively
complete abnormal data sets, we utilize a relative reversing
method on core phases to propose a pair of abstract defini-
tions to express the following two opposite concepts:

� typical normal connections: generate less data trans-
fers during a moderate time period in suitable rate, fre-
quency, and pace.

� typical abnormal connections: generate increasing
data transfers during a very short or very long time pe-
riod continually and fleetly.

Next, 5 pairs of opposite core phases are combined, such
as (“suitable rate”, “increasing”), (“not much”, “much”),
(“during a moderate time period”, “during a very short
or very long time period”), (“suitable frequent”, “contin-
ually”), and (“suitable pace”, “fleetly”), to simulate the dif-
ferences between typical normal and abnormal connections
in a real-world network environment. In general, abnormal
connections should possess at least one or more typical fea-
tures which are in the form of opposite core phases from the
normal ones. That is, for one group of typical normal con-
nections, there would be 31 (C�

�
�C�

�
�C�

�
�C�

�
�C�

�
� groups

of corresponding abnormal connections. Finally, these ab-
stract phases with different numeric values in different net-
works should yield good relative and adjustable generated
traffic patterns.

In our experiments, as shown in details in Section 3.3,
the focus is on TCP connection generation since most at-
tacks are executed via the TCP protocol. This is due to
TCP’s frangibility and instability. For example, a survey
showed that 90% to 94% of Denial of Service (DoS) at-
tacks, which are the major threats to the whole Internet, are
employed via TCP connections [15].

��� �
����

������
�� ����

For any intrusion detection algorithm, feature extraction
(FE) is important since it can drastically affect its perfor-
mance [14]. The network data contains all the required
analysis information and can be extracted from data pack-
ets transferred through the network. Before the features are
extracted from the network data, the information from the
network traffic needs to be collected and stored. Usually,
the network data is in a raw format and further processing is
needed to extract useful features before the data is suitable
to be fed into intrusion detection methods. In this paper, the
following three steps are proposed to extract features that
are critical in network intrusion detection:

� Windump: the windows version of Tcpdump [8] which
uses libcap [13] library to extract low-level traffic from
the network is used to collect and store all the raw data
directly from the network card.

� Tcptrace [3]: a tool used to produce several different
types of output containing information such as elapsed
time, bytes and segments sent and received, retrans-
missions, round trip times, window advertisements,
throughput and more by analyzing the Windump files,
is used to extract basic information on each TCP con-
nection from the Windump data.

� Our own FE techniques are used to extract basic fea-
tures and create time-based, connection-based, and
ratio-based features form the Tcptrace output file.

Four main feature sets are extracted from Tcptrace to de-
scribe a connection:

1. Basic Features: basic information related to the con-
nection. Totally, seventeen basic features are extracted
which include duration, IP, port, total packets, ack
packets, throughput, etc.

2. Time-based Features: the number of connections hav-
ing the same IP or/and port in a 3-second sliding win-
dow. Four time-based features are extracted to provide

information on both the source and destination sides of
a connection.

3. Connection-based Features: the number of connec-
tions having the same IP or/and port in the last 100
connections. Four connection-based features are also
extracted to provide information on both the source
and destination sides of a connection.

4. Ratio-based Features: the ratio of transferred packets
between two connections which have the same IP and
port. Totally, sixteen ratio-based features are extracted
to provide information on both the source and destina-
tion sides of a connection. Ratios are found between
the current and neighbor connections (neighbor ratio)
and between the current and the first connection having
the same IP and port.

In fact, all these features correspond to one or more of
the core phases described in Section 3.1. For example, the
first feature “duration” represents the core phase (“during a
moderate time period”, “during a very short or very long
time period”) directly. Yet another example is the ratio
features which reflect the core phase (“suitable rate”, “in-
creasing rate”). Detailed information about these relations
is shown in Table 1

Table 1. Relation between core phases and
features

Core Word Pair Feature Type
(“suitable rate”, Basic and Ratio-based
“increasing rate”)
(“not much”, “much”) Basic
(”during a moderate
time period”, “during a
very short or very long
time period”)

Basic

(“suitable frequent”, Basic and
“continually”) Connection-based
(“suitable pace”,
“fleetly”)

Basic and Time-based

��� �����	 �
�
��
��

Three anomaly classification methods, namely PCC,
LOF and KNN (k=5), are used to test the feasibility of our
Relative Assumption Modeling and FE techniques in addi-
tion to providing a comparative study between PCC and the
other anomaly detection methods. The experiments are or-
ganized in a similar manner as mentioned in [17][18].

1. All the outlier thresholds are determined from the
training data.

2. The false alarm rate is varied from �� to ���.

3. For the PCC method, the thresholds are chosen based
on �� � �� false alarm rate values.

4. The accuracy of a classifier is measured by the percent-
age of correct classification.

5. The Precision and Recall values [22] are used: Let TP
and FP be the numbers of correctly and falsely detected
abnormal connections, and TN and FN be the numbers
of correctly and falsely detected normal connections.

Precision for abnormal = TP/(TP+FP);

Recall for abnormal = TP/(TP+FN);

Precision for normal = TN/(TN+FN); and

Recall for abnormal = TN/(TN+FP).

Based on the practical experience of observing traffic
conditions and parameters such as network delay, CPU
usage, and memory allocation associated with our LAN
testbed network as well as the proposed Relative Assump-
tion Modeling approach, the relevant typical normal values
for our LAN testbed network are set as follows:

� Generate no more than (“not much”) ������ (5
�����	���� 700
�	��������	�� data transfers “dur-
ing a moderate time period” of about 5 seconds in
“suitable rate” (ratio � ���), “suitable frequent” (� �
in the last 100 connections), and “suitable pace” (� �
in the 3-second sliding Window).

� Next, the typical abnormal values are set by the pro-
posed relatively reversing method, i.e., generating
“much” increasing data transfers (
 ������) at an “in-
creasing rate” (ratio
 ���) “during a very short or
very long time period” (� � seconds or
 � seconds),
“continually” (
 � in the last 100 connections) and
“fleetly” (
 � in the 3-second sliding window).

� Finally, based on the above values, the IP-Traffic traffic
generator tool [19] is employed to generate and label
one group of network connections as “normal” (12,932
TCP connections) and thirty-one groups as “abnormal”
traffic data sets (7,618 TCP connections). This tool
is capable of generating full-duplex TCP connections
in random, increase, or decrease modes within an ap-
pointed range of values, and of controling network pa-
rameters by varying the inter-departure time between
packets and the packets’ sizes. These generated data
sets serve as the training and testing data sets of our
experiments, from which 3,000 “normal” connections
are randomly chosen to train the classifiers, and the re-
maining others are used for testing.

In addition, in order to further test the feasibility of our
Relative Assumption Modeling and FE techniques, and to
determine the universality of the “normal” connections gen-
erated through our methods, 4,000 DoS connections from
the MIT [1] tcpdump data set (LLDOS2.0.2.) are added to
the testing set as abnormal instances.

Table 2 shows the detection rates of the three anomaly
detection methods, i.e., the accuracy of abnormal data de-
tection in the testing set. From this table, it can be seen
clearly that PCC maintains a high detection rate (
 ���)
and always outperforms LOF and KNN, especially in the
lower false alarm rate range of values. These differences
can also be observed in the ROC curves in Figure 2.

Table 2. Detection rates of the three anomaly
detection methods

False PCC LOF KNN
Alarm (k=5)
�� ������ 		�
�� 	�����

� ������ ����
� 		����

� ���	�� ������ 		����
�� �	���� ����
� 	���	�
�� �	��	� ���
�� 	�����
��� ���

� �	���� �
�
��

Figure 2. ROC curves of the three anomaly
detection methods

Table 3 shows the observed false alarm rates of PCC
when compared to the rate used to train the method, which
is the percentage of misclassification of the normal data in
the testing set. From this table, it is clear that the observed
false alarm rate of PCC is below the values used to train
the classifier. This result demonstrates that PCC fulfills its
performance expectations.

Whenever the classification methods present similarly
high detection rates (e.g., �� and ��� false alarm rates),
their corresponding recall and precision values are com-

Table 3. Observed false alarm rate of PCC

Initialized False PCC: Observed
Alarm Rate False Alarm Rate

�� �����

� ��
��

�
��
�
�� �����
�� �����
���
��	�

pared as shown in Table 4. It can be easily seen from
this table that PCC always maintains high recall and preci-
sion (
 ���) values, and also outperforms LOF and KNN
(k=5). Furthermore, the training and classification speeds of
the three methods are also observed, where PCC performs
much faster than LOF and KNN, especially in comparison
to the LOF method. Classification speed is a crucial factor
that must be considered in the implementation of a system
capable of real-time response. All these experimental re-
sults show why PCC is selected as the anomaly detection
method in our host agents.

Table 4. Precision and Recall Comparison of
the three anomaly detection methods

False PCC LOF KNN
Alarm (k=5)

Recall �� ���		� ���
�� 	�����
(Abnormal) ��� ����
� �	���� �
�
��
Recall �� ������ ������ �
�
��
(Normal) ��� �
�
�� ����
� ���

�
Precision �� ����
� �
���� �
�
��
(Abnormal) ��� ������ ������ ���	��
Precision �� �	��	� ���
�� 	�����
(Normal) ��� ���

� ������ ���
��

In addition, one of the significant contribution of this
study is that the generated data sets which are based on
the proposed Relative Assumption Modeling method and
the FE techniques in a large extent can also be successfully
used as either training or testing data sets in the experiments
where the standard KDD data sets were used [17][18]. Such
practical results validate the feasibility and universality of
our proposed Relative Assumption Modeling method and
FE techniques.

4 Agent communication performance

To assess the relationship between scalability and the
burden of the increased agent communication on a real net-
work environment through the use of our proposed commu-
nication protocol, the following experiment is conducted.
First, a host agent detects an abnormal connection instance.
Next, the host agent requests the classification of the at-
tack type from the classification agent to which it is con-
nected. Upon classifying the attack type, the classification
agent sends classification results back to the host agent, and
then informs the other classification agents of the possible
network attack.

Figure 3. Screen shots of the communication
between agents

Let the time period between the detection of an abnor-
mal instance by the host agent and the classification agent
informing the entire network of classification agents of the
possible attack be the response time of the IDS. The ex-
periment makes a few assumptions such as the fact that the

effectiveness of the agent communication will be tested in
the absence of real network traffic or network attacks, and
misuse detection is ignored at the classification agent layer.
Nevertheless, by varying the number of classification agents
that have to be informed of a possible attack from the low to
high values, the experimental results illustrate the pattern in
the increase of response time as more classification agents
are introduced into the IDS grid, thus revealing the prac-
ticality of the proposed communication protocol and the
scalability of our proposed distributed IDS. To perform this
experiment, the communication between agents was sim-
ulated by using Matlab-TCP/UDP/IP Toolbox [16]. Each
computer in the LAN testbed network runs an equal number
of multiple Matlab sessions to simulate the required number
of classification agents for the experiment in addition to the
host agent.

The simulation yielded as a result the generation of nu-
merous messages that follow the communication protocol
described in Section 2.3. The simulation was absent of er-
rors and the messages reached their destination agents prop-
erly, thus eliciting the appropriate response by the agents.
An illustration of the messages generated during the sim-
ulation is shown in Figure 3, which is divided into two
parts: the top-half illustrates the messages generated by the
host agent in response to an abnormality detection and the
communication with a classification agent, and the bottom-
half illustrates the messages generated between classifica-
tion agents during the task of warning the network of a pos-
sible attack. Though simple and compact in sizes, the mes-
sages were found to properly convey the request, warning,
or acknowledgment information they were meant to.

Figure 4. Response time versus scalability

The experimental results also illustrates a linear relation-
ship between the response time and the number of classifi-
cation agents introduced into the system, an indication that
the response time performance of the system will degrade
linearly with scalability. Figure 4 illustrates the high linear-
ity of the result through the regression line correlation coef-
ficient of �� � ����	. This is an important result as mature
knowledge on network programming techniques can lead
to the development of much faster communication between
the agents than the one achieved through Matlab simula-

tion, thus decreasing the slope of the line in Figure 4 and
the degrading effect that scalability has on the response per-
formance of the system.

5 Conclusion

In this paper, a two-layer architecture for an agent-based
distributed intrusion detection system (IDS) was proposed.
Our proposed architecture provides an efficient communi-
cation between agents, introduces a small amount of net-
work traffic by the distributed intrusion detection proce-
dure, and takes the full advantage of distributed network
resources to achieve an excellent performance in intrusion
detection. The concept of the lightweight agent, an agent
software that does not require high processing power, plays
an important role in the design of our system as it takes
into account the finite and shared processing power that
most end-user machines connected to a network can pro-
vide. Based on the proposed distributed architecture, a
testbed local area network (LAN) is built. The proposed
Relative Assumption Modeling method, FE techniques, and
PCC classifier method were employed to generate the test
traffic and to simulate anomaly detection in the host agent
layer. The performance comparison among the PCC, LOF,
and KNN methods shows that PCC can work efficiently and
with high accuracy, low false alarm rates, and timely re-
sponse. Thus, PCC was found to be desirable for use as
the standard anomaly detection method to detect the abnor-
mal connection instances in the host agent layer of the pro-
posed IDS architecture. Due to these inheritant features of
the proposed IDS architecture, a system which only lightly
loads the network it resides in and still maintains a global
view of the events taking place in the network is provided.
The experimental results on the increased agent communi-
cation versus response time verify that our proposed IDS
provides many favorable characteristics such as scalability,
adaptability, and graceful degradation of service.

6 Acknowledge

For Mei-Ling Shyu, this research was supported in part
by NSF ITR (Medium) IIS-0325260. For Shu-Ching Chen,
this research was supported in part by NSF EIA-0220562
and NSF HRD-0317692.

References

[1] The information systems technology group (IST) of mit lin-
coln laboratory, darpa intrusion detection evaluation data
sets. http://www.ll.mit.edu/, 1998.

[2] Kdd cup 1999 data.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,
1999.

[3] Tcptrace. http://www.tcptrace.org, 2005.
[4] D. Anderson, T. Frivold, and A. Valdes. Next-generation

intrusion detection expert system (nides): A summary. SRI
International Technical Report, 95(7):28–42, May 1995.

[5] M. M. Breuning, H.-P. Kriegel, R. T. Ng, and J. Sander.
Lof: Identifying density-based local outliers. ACM SIG-
MOD Conference, pages 93–104, May 2000.

[6] D. Dasgupta and H. Brian. Mobile security agents for
network traffic analysis. DARPA Information Survivability
Conference and Exposition, 2:332–340, June 2001.

[7] J. Hochberg, K. Jackson, C. Stallings, J. McClary,
D. DuBois, and J. Ford. Nadir: An automated system for
detecting network intrusions and misuse. Computer and Se-
curity, 12(3):235–248, May 1993.

[8] V. Jacobson, C. Leres, and S. McCanne. tcpdump. anony-
mous@ftp.ee.lbl.gov, June 1989.

[9] I. T. Jolliffe. Principal Component Analysis. Springer-
Verlag, New York, second edition edition, 2002.

[10] K. Labib and V. Vemuri. Detecting and visualizing denial-
of-service and network probe attacks using principal com-
ponent analysis. Third Conference on Security and Network
Architectures, SAR’04, June 2004.

[11] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivas-
tava. A comparative study of anomaly detection schemes
in network intrusion detection. Third SIAM Conference on
Data Mining, May 2003.

[12] W. Lee and S. J. Stolfo. A framework for construct-
ing features and models for intrusion detection systems.
ACM Transactions on Information and Systems Security,
3(4):227–261, November 2000.

[13] Libcap. http://www.tcpdump.org, 2005.
[14] H. Liu, L. Yu, D. Manoranjan, and H. Motoda. Ac-

tive feature selection using classes. Seventh Pacific-Asia
Conference on Knowledge Discovery and Data Mining,
LNAI2637:474–485, May 2003.

[15] D. Moore, G. Voelker, and S. Savage. Inferring inter-
net denial-of-service activity. Usenix Security Symposium,
pages 9–22, August 2001.

[16] P. Rydesater. Matlab-TCP/UDP/IP toolbox.
http://www.mathworks.com/matlabcentral/, 2005.

[17] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang.
Principal component-based anomaly detection scheme.
Foundations and Novel Approaches in Data Mining, pages
311–329, In press.

[18] M.-L. Shyu, K. Sarinnapakorn, I. Kuruppu-Appuhamilage,
S.-C. Chen, L. Chang, and T. Goldring. Handling nominal
features in anomaly intrusion detection problems. The 15th
International Workshop on Research Issues on Data Engi-
neering (RIDE), in conjunction with The 21st International
Conference on Data Engineering, pages 55–62, April 2005.

[19] Z. Telecom. Ip-traffic: an ip network monitoring and
testing software. http://www.zti-telecom.com/pages/main-
ip.htm, 2005.

[20] J. Tou and R. Gonzalez. Pattern recognition principles.
1974.

[21] T. Verwored and R. Hunt. Intrusion detection techniques and
approaches. Computer Communications, 25:1356–1365,
2002.

[22] Y. Yang. An evaluation of statistic approaches to text cate-
gorization. 1999.

