
Handling Missing Values via Decomposition of the Conditioned Set

Mei-Ling Shyu, Indika Priyantha Kuruppu-Appuhamilage
Department of Electrical and Computer Engineering, University of Miami

Coral Gables, FL 33124, USA
shyu@miami.edu, ikuruppu@umsis.miami.edu

Shu-Ching Chen
Distributed Multimedia Information System Laboratory, School of Computer Science

Florida International University, Miami, FL 33199, USA
chens@cs.fiu.edu

LiWu Chang
Center for High Assurance Computer Systems

Naval Research Laboratory, Washington, DC 20375, USA
lchang@itd.nrl.navy.mil

Abstract

In this paper, a framework for replacing missing values
in a database is proposed since a real-world database is sel-
dom complete. Good data quality in a database can directly
improve the performance of any data mining algorithm in
various applications. Our proposed framework adopts the
basic concepts from conditional probability theories and
further develops an algorithm to facilitate the capability
of handling both nominal and numerical values, which ad-
dresses the problem of the inability of handling both nomi-
nal and numerical values with a high degree of accuracy in
the existing algorithms. Several experiments are conducted
and the experimental results demonstrate that our frame-
work provides a high accuracy when compared with most
of the commonly used algorithms such as using the average
value, using the maximum value, and using the minimum
value to replace missing values.

1 Introduction

The performance of any data mining application heavily
depends on the quality of the data in the database, where
data quality refers to the accuracy and completeness of the
data. Especially, the databases in practical applications are
usual large, where the problems of inaccurate and/or incon-
sistent data are inevitable [1]. In a real-world environment,
there are many possible reasons why the inaccurate or in-
consistent data occur in a database, e.g., equipment mal-

functioning, the deletion of data instances (or records) due
to the inconsistency with other recorded data, not entering
data due to misunderstanding, considering the data as unim-
portant at the time of entry, etc. This may cause numerous
missing values in the database, which can negatively impact
the discovered patterns/knowledge from the data mining al-
gorithm. Moreover, the errors or data skews can even pro-
liferate across subsequent runs, which causes a larger and
cumulative error effect. Hence, data preprocessing (partic-
ularly missing value handling) that describes any types of
processes performed on the raw data to prepare them for
other processing procedures is needed.

Data preprocessing usually involves cleaning the data
before they are used in data mining tools [9][11] or any
applications. The need for data cleaning increases sig-
nificantly especially when there are multiple data sources
that need to be integrated [2][4]. Thus, data cleaning has
become a vital and challenging aspect in preprocessing
[5][7][8]. For example, some issues and current approaches
in data cleaning in a single source and multiple sources were
discussed in [9]. Missing value handling is one of the major
tasks in data cleaning.

Numerous techniques have been developed to handle
missing values in the literature. For example, a missing
value can be ignored, which is the easiest way to handle
missing values, but it does not contribute to enhance the
quality of the database that has the missing values [10][12].
Another typical way to handle missing values is to replace
them by using the average value, substituting with the max-
imum value, or using the minimum value. However, these

techniques can only be applied when the attribute consists
of numeric values because the statistical measures used are
defined only on numerical values. Inferring the most prob-
able value to fill in the missing value (a crude version of
the density-based model) is also used [6]. However, this ap-
proach is useful only when the attribute values are nominal
since it is difficult to define the most probable value for a
set of continuous values. On the other hand, the method
of considering the missing value as another distinct value
works on both numerical and nominal values.

To address this issue, a novel framework called F-DCS
for replacing missing values is proposed in this paper. F-
DCS stands for the Framework based on the Decomposi-
tion of the Conditioned Set, which adopts the concepts on
conditional probability and is based on the decomposition
of the conditioned set. It has several advantages. First, it
has the capability of handling both numerical and nominal
missing attribute values with a comparatively higher per-
centage of accuracy when compared with the other existing
techniques. Second, when considering the method of us-
ing the most frequent value, the replacing value is taken as
the mode of all the values in that particular attribute. How-
ever, our framework refers only to the most relevant set of
values to estimate the missing value. Thus, fewer ambigu-
ities are introduced in selecting the value for replacing the
missing values. Third, unlike the other methods such as
using the average value or using the mean value that per-
form better only when the data fits into a normal distribu-
tion, our proposed framework is not restricted to any dis-
tributional assumptions. Finally, our framework does not
need to be trained, and is built/developed using the same in-
put data set. Therefore, the necessity of a training data set
can be avoided, which makes our framework best fits into
real-world applications.

We have conducted a set of experiments on three
databases at the UCI Machine Learning Repository [13]
to evaluate our proposed F-DCS framework. The experi-
mental results demonstrate that the proposed framework can
handle both nominal and numerical values with a high de-
gree of accuracy when compared with any other techniques.
The results also show our superiority with a high degree of
certainty.

This paper is organized as follows. Section 2 describes
our proposed F-DCS framework in details. The experimen-
tal procedure together with the experimental results are pre-
sented in Section 3. We conclude our study in Section 4.

2 Framework for Handling Missing Values

In this section, our proposed framework for handling
missing values based on the concepts of conditional prob-
ability theories is presented. The F-DCS framework uses
the decomposition of the conditioned set starting from the

maximum number of elements to accommodate for multi-
ple missing values, and has the capability to handle both
numerical and nominal missing data values.

a

1

a

2

...
 ?
 ...
 a

n

A
1
 A
2
 … A
 m
 … A
 n

Figure 1. Data instance having a single miss-
ing value (Attribute Am)

A
1
 A
2
 … A
 m
 … A
k
 … A
 l
 … A
 n

a

1

a

2

...
 ?
 ...
 ?
 ...
 ?
 ...
 a

n

Figure 2. Data instance having multiple miss-
ing values (Attributes Am, Ak, and Al)

Practically, a single data instance may have one or more
missing values as shown in Figure 1 and Figure 2, respec-
tively. As can be seen from these two figures, assume the
database hasn number of attributes, denoted byAi, where
1 ≤ i ≤ n. Consider one data instance from the database.
The value that an attribute can take is represented byai,
where1 ≤ i ≤ n. A “?” in the corresponding entry in-
dicates the value for that attribute is missing. For example,
Figure 2 has three missing values for attributesAm, Ak,
andAl. In replacing missing values, each missing value is
considered one at a time with the following procedure.

Considering a missing value in attributeAm, the set
Qn−1 is defined as shown in Equation 1, where{Q1 : A1 =
a1} denotes the set of data instances having a valuea1 for
the attributeA1 by considering all the data instances of the
database. The condition (Am = am) is excluded from the
setQn−1.

Qn−1 = {Q1 : A1 = a1} ∩ {Q2 : A2 = a2} ∩ . . .

∩{Qm−1 : Am−1

= am−1} ∩ {Qm+1 : Am+1 = am+1} ∩ . . .

∩{Qn : An = an} (1)

In our proposed framework, the idea is to match the
values of the corresponding attributes between the data in-
stance with missing values and the rest of the data instances
in the data file. For nominal attribute values, the probable
set of the values that attributeAm can have is denoted by
the set{m1, m2,m3, . . . , mq} assuming there areq possi-
ble values forAm. The two values of a nominal attribute
are said to be matched if their values are equal. For each at-
tribute with missing values (say themth attribute), we keep
a count for each probable value from all the data instances

for that attribute, and the value with the maximum count
is used to replace the missing value. Section 2.1 discusses
how the proposed framework handles missing values that
are nominal. On the other hand, such a set of probable val-
ues cannot be defined for numerical attribute values, and it
is difficult to have an exact match. Therefore, a different
approach that introduces a threshold value to take care of
this problem is proposed, and will be discussed in Section
2.2.

2.1 Nominal Attributes

Assume that the setM contains q subsets
(M1,M2, . . . , Mq) as given in Equation 2. LetΘ be
the set of all possible mutually exclusive outcomes of an
experiment,Σ be an algebra defined onΘ, andP (Θ, Σ)
be the set of all probability measures onΣ. According
to the conditional probability theory [3], when each
subset in(M1,M2, . . . , Mq) is considered at a time as
the setB, P (.) ∈ P (Θ, Σ) andP (Qn−1) > 0 for some
Qn−1 ⊂ Σ, the conditional probability ofB givenQ (i.e.,
P (B | Qn−1)) can be defined in Equation 3. This will cre-
ate a setW consisting ofq probabilities by calculating the
frequency count. Let1 ≤ j ≤ q andwj = P (Mj | Qn−1),
the setW is given in Equation 4. From the setW , the
maximum probability can be found, saywj . Therefore, the
missing value for attributeAm is replaced bymj , where
mj corresponds to the setB that satisfies the condition
(Am = mj).

M = {M1 : Am = m1} ∪ {M2 : Am = m2} ∪ . . .

∪ {Mj : Am = mj} ∪ . . . {Mq : Am = mq}. (2)

P (B | Qn−1) =
P (Qn−1 ∩B)

P (Qn−1)
. (3)

W = {w1, w2, . . . , wj , . . . , wq}. (4)

However, it is possible that a non-zero probability in any
element of the setW cannot be found. In such a scenario,
the concept of decomposition of the conditioned set is uti-
lized. Define the setQn−2 by removing one subset at a
time from the setQn−1. The setQn−2 becomes a superset
of Qn−1 assuming that the first subset is removed from the
setQn−1.

Qn−2 = {Q2 : A2 = a2} ∩ . . . {Qm−1 : Am−1 = am−1}
∩{Qm+1 : Am+1 = am+1} ∩ . . . {Qn : An = an}

Using the setQn−2 as the conditioned set, the new set
of probabilities forW can be calculated. Since there are
(n-1) ways to remove one subset fromQn−1 to generate
the supersetQn−2. Therefore, the conditional probabilities
should be calculated by considering each superset as the
conditioned set, which results in(n − 1) × q probability

values. If a non-zero probability in any of the element in
W still cannot be found, two subsets from the setQn−1 are
removed to generate the supersetQn−3. Continue such a
procedure until at least one non-zero probability value in
W is found. However, the number of subsets that can be
removed fromQn−1 becomes larger and larger, the total
number of supersets that can be generated becomes large as
follows.

(n − 1) + (n − 1)(n − 2) + (n − 1)(n − 2)(n − 3) + . . .
+ . . . + (n− 1)(n− 2) . . . 2

Though this number seems to be large, however, time
complexity is not really a major concern in this study. The
reasons are that (i) all the probabilities can be calculated in
one database scan for a particular missing value, and (ii) the
data cleaning process is usually done off-line.

2.2 Numerical Attributes

In our proposed framework, a technique for using a
threshold value to deal with the numerical values has been
introduced instead of discretizing the values. The advan-
tage of using a threshold value over using discretization is
that the threshold value indicates some distance measure be-
tween two values; while discretization converts each value
to a pre-set partition, which does not reflect the actual dis-
tance between two values. As an example, consider a set of
integers from 1 to 10, and assume that the number of parti-
tions in discretization is 5. Then the numbers 1 and 2 will be
assigned to the first partition, the numbers 3 and 4 go to the
second partition, and so on. When the numbers 1 and 2 are
considered, they are similar because they are in the same
partition. On the other hand, in calculating the threshold
value, a threshold value can be set in the way that these two
numbers can be considered as similar. When the numbers 2
and 3 are considered, using the same threshold value, they
can be considered as similar, too. This process is more rea-
sonable because the difference between these two numbers
is the same as that in the first case. However, in generic dis-
cretization, these two numbers will go to different partitions
and cannot be considered as similar. Therefore, using the
threshold value approach proposed in our framework gives
a better indication of the distance between two numbers.

Let any two numerical values,n1 andn2, belong to the
same attribute, and let “range” denote the difference be-
tween the maximum and minimum values for that particular
attribute,n1 andn2 are considered to be equal when their
Thresholdvalue(calculated from Equation 5) exceeds a pre-
set threshold value. From empirical studies, the value20 is
considered as the pre-set threshold value in the conducted
experiments.

Thresholdvalue =| (n1 − n2)
range

| ×100. (5)

Unlike in the nominal case, the maximum probability for
each candidate value for a missing value cannot be calcu-
lated since the attribute value is continuous. Hence, the av-
erage value of the selected set of candidates for the missing
value is used. When the equal probable values come across
for a particular missing value, the ties are broken by consid-
ering the most frequent value for that particular attribute.

3 Experimental Result Analysis

In order to evaluate the performance and accuracy of our
proposed F-DCS framework in replacing missing values for
the attribute(s), several experiments using three databases at
the UCI Machine Learning Repository [13] are conducted.
These three databases were selected in the manner that
one has only numeric attributes, one has only nominal at-
tributes, and one has both numerical and nominal attributes
to demonstrate our proposed framework can handle both the
nominal and numerical attributes.

Table 1 shows the databases that were used in the ex-
periments. As can be seen from this table, theIonosphere
database consists of 34 attributes that are all numerical and
have both positive and negative values. TheCylinder Bands
database has the mix of nominal (19) and numerical (20)
attributes. TheMushroomsdatabase, on the other hand, has
only 22 nominal attributes.

Table 1. UCI databases used in experiments
Database Name Nominal Numerical

Attributes Attributes
Ionosphere Database 0 34
Cylinder Bands Database 19 20
Mushrooms Database 22 0

For comparison purposes, for each database, ten sam-
ple files are first generated and then used as the reference
data files in calculating the accuracy of replacing the miss-
ing values. For each sample file, another set of files having
the missing value percentages of 2%, 5%, 10%, 20%, 25%,
50%, and 70% are generated by artificially introducing
missing values into the database by distributing them ran-
domly and uniformly into the database, since the databases
originally have no missing. However, a database may con-
tain a certain low percentage of missing values if it is to
be used for some applications. Therefore, in selecting the
missing value percentages, more concern is placed on the
lower percentage of missing values (for example, 2%, 5%,
10%, 15%, 20%, and 25%). The percentages of 50% and

70% are used for the completeness of the performance eval-
uation purpose, although it is almost worthless to use any
database consisting of more than 50% missing values in
practical applications.

Assume each file is represented as anm×n matrix (i.e.,
m rows andn columns), and letr1 andr2 be two random
numbers such that1 ≤ r1 ≤ m and1 ≤ r2 ≤ n. Then, a
missing value is inserted to(r1, r2) entry in the file. Con-
tinuing the same procedure, the missing values are intro-
duced until the required missing value percentage of the file
is reached. LetNmissing be the number of missing values
in the file, the missing value percentage is calculated as fol-
lows.

Missing-value-percentage =Nmissing

m×n × 100.

After generating all the files with the missing values, the
F-DCS framework is compared with the commonly used
techniques such as using the average value, using the max-
imum value, and using the minimum value to replace miss-
ing values. They are denoted by “F-DCS”, “Avg”, “Max”,
and “Min”, respectively in the experimental results.

An important issue to be addressed is that all these tech-
niques are only defined for numerical values. Therefore, a
different consideration needs to be used when dealing with
nominal attributes. That is, the most frequent value for a
nominal attribute is chosen to replace the missing value.
Thus, for theIonosphereand theCylinder Bandsdatabases,
all the three techniques are used to compare with our F-DCS
framework. On the other hand, for theMushroomdatabase,
only the average technique that uses the most frequent val-
ues is used in the comparison. The performance evaluation
is to compare each resulting file with the corresponding ref-
erence file and to calculate the percentage of the accurately
filled values for those missing values. Each combination of
a database and a missing value percentage, the percentages
of the accuracy for the ten sample files are calculated and
their average accuracy is reported in the performance com-
parison.

3.1 Performance Comparison for theIonosphere
Database

The first comparison is shown in Table 2 for theIono-
spheredatabase (consisting of both negative and positive
numerical values). From this table, it can be easily seen that
our framework achieves above 80% accuracy for the miss-
ing value percentages less than 50%, and outperforms any
other techniques under the various missing value percent-
ages. On the other hand, the average value method achieves
around 60% accuracy, and the maximum value method and
the minimum value method both have very low accuracy
performance.

The first column of Table 2 describes the missing value
percentages of the input files. As an example, when the

average accuracy of our F-DCS framework is 86.72% when
the input files have 2% missing values; while the average ac-
curacies are 58.86%, 39.36%, and 12.35% respectively for
the methods of using the average value, using the maximum
value, and using the minimum value under the same miss-
ing value percentage. This demonstrates that our framework
constantly replaces the missing values with a high degree of
accuracy; while the methods of using the minimum value
and using the maximum value achieve very low accuracy
values.

Table 2. Accuracy of filling missing values for
the IonosphereDatabase

Percent F-DCS Average Maximum Minimum
2% 86.72% 58.86% 39.36% 12.35%
5% 85.01% 56.91% 37.02% 12.95%
10% 85.35% 59.07% 36.83% 11.96%
15% 84.79% 59.51% 36.65% 12.57%
20% 83.81% 57.95% 36.37% 12.89%
25% 83.38% 57.69% 36.86% 12.78%
50% 78.36% 57.98% 36.52% 12.82%
70% 70.43% 57.61% 36.54% 12.89%

3.2 Performance Comparison for the Cylinder
BandsDatabase

The second experiment is to compare the performance
when a database has both numerical attributes and nominal
attributes. For this purpose, theCylinder Bandsdatabase
that has almost the same number of numerical and nominal
attributes is considered. The original database consists of
2% missing values. Therefore, there is no row for the 2%
case in Table 3. Also, since this database has both types of
attributes, we have to modify all the techniques to facilitate
their capabilities in handling such a scenario by selecting
the most frequent value to deal with nominal values as de-
scribed earlier in this section.

As can be seen from Table 3, the F-DCS framework
outperforms the other techniques for most of the missing
value percentages (5%, 10%, 20%, 25%, and 50%) with an
exception of the 70% of missing values, where the aver-
age technique performs better than the F-DCS framework.
When the missing value percentages are below 70%, the F-
DCS framework outperforms the other methods by achiev-
ing above 80% of accuracy. Please note that a database hav-
ing more than 50% of missing values is practically consid-
ered as obsolete.

Table 3. Accuracy of filling missing values for
the Cylinder BandsDatabase

Percent F-DCS Average Maximum Minimum
5% 83.37% 71.81% 41.37% 41.34%
10% 82.88% 72.04% 37.75% 40.04%
15% 81.33% 73.79% 37.93% 41.54%
20% 79.72% 73.50% 38.74% 42.63%
25% 78.20% 73.15% 37.96% 41.58%
50% 71.97% 71.13% 38.81% 40.81%
70% 67.69% 69.35% 39.76% 41.27%

3.3 Performance Comparison for theMushrooms
Database

The third experiment is conducted on theMushrooms
database that has only the nominal attributes, unlike the
other databases that consist of numerical attributes. Sim-
ilarly, it is selected to demonstrate the F-DCS framework
has the capability to handle both numerical and nominal
attribute values. Since this database has only nominal at-
tributes, it does not seem to be meaningful to compare the
F-DCS framework with the techniques of using the maxi-
mum value and using the minimum value. Hence, only the
modified version of the average technique is used to com-
pare its results with the F-DCS framework.

Table 4 clearly shows that the F-DCS framework handles
the nominal attribute values much better than the average
technique. For all the missing value percentages, the F-DCS
framework always provides more than 70% accuracy but the
average technique can only reach less than 60% accuracy.

Table 4. Accuracy of filling missing values for
the MushroomsDatabase

Percent F-DCS Average
2% 70.05% 58.80%
5% 73.29% 58.82%
10% 76.55% 58.98%
15% 78.00% 59.08%
20% 78.56% 59.06%
25% 78.82% 58.96%
50% 76.82% 58.99%
70% 70.53% 58.92%

From the results of these three experiments, it can be
shown that the F-DCS framework can stably and consis-
tently achieve relatively high accuracy values for various
percentages of missing values and for databases with only

numerical attributes, only nominal attributes, and both nu-
merical and nominal attributes.

4 Conclusion

In this paper, a novel framework, called F-DCS, based
on the decomposition of the conditioned set from the con-
ditional probability for replacing missing values as a data
cleaning tool is proposed. A good data cleaning tool can
improve the performance of the data mining algorithms
for various applications. A set of experiments on three
databases in the UCI repository are conducted to evaluate
the performance of the F-DCS framework. The selected
databases include one with purely nominal attributes, one
with purely numerical, and one with mixed numerical and
nominal attributes. From the experimental results, it can be
concluded that the F-DCS framework has the capability to
handle both nominal and numerical values with a high de-
gree of accuracy when compared with the other commonly
used techniques such as using the average value, using the
maximum value, and using the minimum value. The pro-
posed F-DCS framework achieves almost above 80% accu-
racy for lower percentages of missing values, which are the
most common scenarios for any real-world application.

5. Acknowledgment

For Mei-Ling Shyu, this research was supported in part
by NSF ITR (Medium) IIS-0325260. For Shu-Ching Chen
and Mei-Ling Shyu, this research was supported in part by
Naval Research Laboratory (NRL)/ITT: 176815J.

References

[1] D. P. Ballou and G. K. Tayi, “Enhancing Data Quality
in Data Warehouse Environments,”Communications
of ACM, 42, 1999, pp. 73–78.

[2] M. G. Ceruti and M. N. Kamel, “Preprocessing and
Integration of Data from Multiple Sources for Knowl-
edge Discovery,”International Journal on Artificial
Intelligence Tools, 1999, pp. 157–177.

[3] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Clas-
sification, Second Edition, Wiley-Interscience, New
York, NY, 2001.

[4] H. Galhardas, D. Florescu, D. Shasha, and E. Simon,
“An Extensible Framework for Data Cleaning,” In
Proceedings of the International Conference on Data
Engineering (ICDE), San Diego, CA, 2000, pp. 312

[5] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and
C. A. Saita, “Declarative Data Cleaning: Language,

Model, and Algorithms,” InProceedings of Int. Conf.
on Very Large Data Bases (VLDB’01), Rome, Italy,
2001, pp. 371–380.

[6] R. J. Little and D. B. Rubin.Statistical Analysis with
Missing Data, John Wiley and Sons, New York, 1987.

[7] J. I. Maletic and A. Marcus, “Data Cleansing: Be-
yond Integrity Analysis,” InProceedings of the In-
ternational Conference on Information Quality, 2000,
pp. 200–209.

[8] A. Maydanchik, “Challenges of Efficient Data Cleans-
ing,” DM Review, September Issue, 1999.

[9] E. Rahm and H. H. Do, “Data Cleaning: Problems and
Current Approaches,”Bulletin of the IEEE Technical
Committee on Data Engineering, 23, 4, 2000, pp. 3–
13.

[10] T. Redman.Data Quality: Management and Technol-
ogy, Bantam Books, New York, 1992.

[11] P. Vassiliadis, Z. Vagena, S. Skiadopoulos, N.
Karayannidis, and T. Sellis, “Arktos: A Tool for Data
Cleaning and Transformation in Data Warehouse En-
vironments,”Bulletin of the IEEE Technical Commit-
tee on Data Engineering, 23, 4, 2000, pp. 42–47.

[12] Y. Wand and R. Wang, “Anchoring Data Quality Di-
mensions Ontological Foundations,”Communications
of ACM, 39, 1996, pp. 86–95.

[13] http://www.ics.uci.edu/ mlearn/MLSummary.html

