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Abstract

The analysis of tropical cyclones (TC) depends heav-
ily on the quality of the incoming data set. With the ad-
vances in technology, the sizes of these data sets also in-
crease. There is a great demand for an efficient and ef-
fective unsupervised quality control tool. Towards such
a demand, data mining algorithms like spatial cluster-
ing and specialized distance measures can be applied to
perform this task. This paper reports our findings on
the studies on utilizing a density-based clustering algo-
rithm with three different distance measures on a series
of TC data sets.

1 Introduction

Tropical Cyclones (TCs) occur throughout the
world’s oceans and are monitored globally by aircraft-,
space-, and earth-based observing systems. Advances
in computing and communications have made it possi-
ble to obtain these observations from around the world.
To properly understand the life-cycle of a TC, hur-
ricane specialists and meteorologists rely on observa-
tions, models and analyses of the environment. These
models and analyses combine observations from the
above mentioned observing systems collected in near
real-time. However, the model results and analysis can
only be as accurate as the data that is collected and
used. Hence, quality control (QC) of the observation
points is critical to the preparation of data for analysis.

QC is a time consuming task performed subjec-
tively by hurricane specialists and meteorologists, and
is largely based on personal experience and trust in
the various observing platforms. As technology ad-
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vances, so does the quantity of the observations that
must be quality controlled. The quality of remote sens-
ing platforms such as Doppler RADARs and satellite
are quickly improving. Improved wind retrieval algo-
rithms allow for observations to be measured at higher
resolutions thus increasing the number of observations
that can be obtained. In order to keep up with the
growing demands of larger data sets, data mining rou-
tines, such as clustering, look promising in automating
the quality control of TC meteorological observations.
Spatial clustering schemes can be used to quickly and
effectively detect noise in the data.

This paper is organized as follows. Section 2 briefly
gives an explanation of the data. In Section 3, how the
clustering technique can be used to facilitate the QC of
the observations is discussed. The DBSCAN clustering
algorithm and the issues involving in the implementa-
tion with TC data are also presented in Section 3. Sec-
tion 4 gives the results. Finally, conclusion and future
directions are discussed in Section 5.

2 Current State of TC Data

The global meteorological observing system has
been evolving for 300 years, but the current real-time
system is a product of the technology and communica-
tions in the 19" century [2]. Today’s global network
of meteorological observing systems includes observa-
tion stations on the Earth’s surface both on land and
sea. Remote sensing platforms including RADARs and
satellites in space. There are also various airborne ob-
serving systems around the world, such as weather bal-
loons and reports from commercial aircrafts.

The National Oceanic and Atmospheric Adminis-
tration (NOAA) operates research and reconnaissance



missions in conjunction with the 53rd Weather Re-
connaissance Squadron of the 403rd Wing, Air Force
Reserves, into North Atlantic and East Pacific trop-
ical cyclones [8,14]. These aircrafts carry an array
of in-situ and remote sensing instruments which in-
clude wind anemometers as well as thermometers and
barometers, precipitation probes and several Doppler
RADARs located at key positions of the aircraft. One
cutting-edge remote sensing device used is the Stepped-
Frequency Microwave Radiometer [23] which can esti-
mate winds near the surface. GPS Dropwindsondes are
ejected from the aircraft into the storm and they can
provide in-situ measurements from the aircraft flight-
level all the way to the ocean surface generating useful
vertical profiles [6]. All these measurements are con-
sidered by the meteorologists when studying TCs for
research and forecasting.

NOAA’s National Weather Service (NWS) and its
National Hurricane Center (NHC) in Miami, FL have
the responsibility to monitor and inform the public
of a TC’s status in the North Atlantic and East Pa-
cific Oceans. The NHC hurricane specialists use all of
the above mentioned observing platforms in conjunc-
tion with Numerical Weather Prediction (NWP) mod-
els and objective analysis products to make decisions
regarding the future track and intensity of a TC, and
to declare evacuations in the event of a landfall. The
NWP and analyses used depend heavily on the qual-
ity and quantity of the observations assimilated. The
surface wind analysis used by NOAA’s Hurricane Re-
search Division (HRD) of the Atlantic Oceanographic
and Meteorological Laboratory (AOML) in Miami, FL,
is an objective spline analysis [15,16]. The HRD Spline
Analysis (HSA) attempts to generate a uniform esti-
mate map of the current state of a TC based on a
quality controlled set of observation points.

While technology has improved some of the qual-
ity, it has also increased the quantity of observations.
Manual QC of the data has become an overwhelming
task. Gross error checking can remove some points,
but the bigger challenge occurs when there are con-
flicting neighboring data points. After many years of
studies, the various observing platforms have been as-
signed relative weights [7,17-20], which are used by
HSA in an attempt to handle these areas with conflict-
ing data points.

3 Clustering TC Data

As mentioned in Section 2, a combination data from
space-, air- and surface-based observing platforms are
assimilated into NWP models and analyses. The two
main issues related to their quality are the accuracy

of the measured values and the spatial coverage of the
data points. While there is little to be done about
the areas of low density (other than to add more sta-
tions and newer observing systems), the efficient and
effective QC of the data in the areas of higher density
is vital to the estimation of the current state of the
environment (see Figure 1 for a sample data coverage
plot). Currently, other than gross error checking, some
models and analysis systems have incorporated other
QC techniques such as buddy checks, commonly known
as nearest-neighbor checks. However, as well known
by the data mining community, the efficiency of these
checks are heavily affected by the size of the data set.

Figure 1. Sample of data coverage of non
quality controlled TC data from Hurricane
Ivan (16 September 2004 0130UTC)

H*Wind, a tool developed by HRD, allows the me-
teorologists to visually interact with data from the var-
ious available sources, and manually QC the observa-
tions. However, as mentioned earlier, this is a time
consuming and subjective task. The need for an ac-
curate estimation of the current environmental state
requires a timely and efficient QC method. In addi-
tion, this process should not depend heavily on human
interaction, due to its subjective nature.

Recent developments in the field of data mining and
clustering in particular, provide a good starting point
for the development of an unsupervised QC method for
the meteorological observation data sets. Since these
observations are collected on a global scale, their spa-
tial nature makes spatial clustering routines stand out
as a viable tool.

Clustering is the unsupervised classification of pat-
terns found within data [9]. There are basically two
types of clustering algorithms, partitioning and hierar-
chical [10]. Partitioning algorithms attempt to divide a



database D into k clusters based on its relationship to
the cluster’s center (k-means) or to some central mem-
ber of a cluster (k-medoid). Hierarchical algorithms at-
tempt to generate clusters by taking either the whole
database and decomposing it one level at a time, or by
taking each point as an individual cluster and merging
them to form larger and more descriptive clusters.

In the area of spatial clustering, many algorithms
have been developed over the years [3,4,11,13,22, 24,
25]. Spatial clustering algorithms attempt to find the
clusters over a geographic space. Several spatial clus-
tering algorithms also have been developed with the in-
tent to handle the existence of noise in data sets. The
primary issue with meteorological data sets is that not
all points that would be classified as noise are really
noise.

Most clustering algorithms tend to label data points
that do not fit into a cluster, as unclassified points or
noise. As just mentioned, in the meteorological ob-
servation network, a majority of the world is not con-
stantly monitored. Satellites provide a good source of
observations in the areas of low coverage, but polar-
orbiting satellites only measure points approximately
once every 12 hours. Consequently, there tend to be ob-
servation points without neighbors. The drifting buoy
and volunteer ship reports collected can be located at
any random location throughout the world’s oceans.
While these reports may not always accurate', they
are often the only source of data in key areas. Also
geostationary satellites are limited to retrievals in the
visible and infrared spectrum due to their relatively
higher orbits causes retrieved observations to be spread
out [12]. To consider all data points without neighbors
as noise, would leave many areas completely void of
any measurement. This can be detrimental to analyses
and NWP models. When implementing a clustering al-
gorithm, this must be taken into account. At the same
time, clustering makes it relatively easy to find noise
in the areas of higher density.

3.1 Selected Clustering Algorithm: DBSCAN

When choosing a clustering algorithm, there are
many details that depend on the data set involved.
Most clustering algorithms, being unsupervised, use
assumptions taken from the data set to help define
partitions, and consequently the resulting clusters may
vary [5]. The same algorithm using different assump-
tions about the data and different input parameters

Volunteer ship reports are taken by government and com-
mercial sailors. These sailors are not always scientists or meteo-
rologists, and while they do follow a set of standards, the quality
of the observations can be inconsistent.

can result in completely different clusters. Based the
literature [9,11], DBSCAN was selected as the algo-
rithm for the task at hand. DBSCAN (Density Based
Spatial Clustering of Applications with Noise) [3] is
a density-based clustering algorithm. Other algo-
rithms researched included grid-based algorithms like
STING [24] and WaveCluster [22], and other partition-
ing algorithms like CLARANS [13].

The initial algorithm selected was CLARANS for its
speed through the use of a randomized search, but as
discovered in further readings, while designed for large
data sets, it does not perform as well as many other
algorithms. The grid-based algorithms were evaluated
based on their speed, but not selected due to the fact
that they do not effectively account for points on the
border between two clusters. Based on the average
data coverage and the known physics of a TC, density-
based algorithms like DBSCAN and others like DB-
CLASD [25] were evaluated.

The DBSCAN algorithm can be found in [3,4].
In summary, DBSCAN first determines if a point is a
core point or a border point, and then finds all density-
reachable points from a core point and classifies it as
a cluster. If a point is not reachable, it is labeled as
noise. It takes two values as input parameters, Eps
and MinPts. MinPts is the minimum number of points
it takes to be a cluster, and also determines whether
a point is a core point or a border point. Based on
Ester et al. [3,4], the value of MinPts can be fixed at
four points and choosing anything larger did not pro-
duce significantly different results. The value of Eps
is the “distance” from a point that another point can
still be considered as a neighbor. They also describe an
objective way of determining a value for Eps, but for
the purposes of this paper, this value was determined
based on the discussions with hurricane meteorologists
and specialists.

3.2 Implementation Issues

As already mentioned, clustering results depend
heavily on the assumptions taken from the data set.
These assumptions help when designing and improving
a distance function. Distance functions, while they can
be very generic, when tuned for a data set, the more ac-
curate the results will be. Attributes commonly avail-
able to meteorological observations include: winds,
temperature, humidity, and pressure. Each measure-
ment comes from an independent measuring devices
with the exception of satellites which derive their val-
ues based on other observable quantities. While there
are some relations between measurements that can be
derived, the measurements do not necessarily depend



on one another. In this paper, the attributes, unless
otherwise specified, will be focused on location, time,
wind speed, and wind direction.

As seen in Figure 1, the density of the observations
varies throughout the domain. Like most clustering al-
gorithms, DBSCAN labels all points without a signifi-
cant number of neighbors to be noise. However, it does
provide an excellent support for detecting noise within
the areas of high density. The issue of neighbor-less
points also depends on how one implements the dis-
tance function.

Spatial clustering schemes like all clustering
schemes, including DBSCAN, are heavily dependent
on the distance functions. In general, spatial cluster-
ing schemes use Cartesian coordinates like Mercator
latitudes and longitudes to represent location and sim-
ple distance measures like Euclidean and Manhattan.
As already mentioned, the use of Cartesian coordinates
and simple Euclidean distance measures can lead to a
majority of the observation points to be labeled as noise
or with no neighbors.

When there is a significant amount of information
known about the data set to be clustered, even these
simple distance functions can be tuned. In the case of
TCs, there is much known about the physical struc-
ture. As discussed in [1,15,16,21], a key feature of
TCs is their cylindrical nature. Winds within a TC re-
volve around the center of circulations®. Based on this
knowledge, an implementation can take into account
these structural features. Another key feature about
TCs is that it is relatively symmetric in nature, if the
wind direction of an observation on one radial is of a
particular value, the wind direction values on the op-
posite radial should approximately be the inverse. It
has also been noted that TCs behave slightly different
in each quadrant, and that the observations within one
quadrant should be significantly more similar to each
other than to the observation in another quadrant.

With this knowledge, distance functions can be tai-
lored and tuned. Taking into account the cylindrical
nature of a TC, using the Cartesian coordinate system
can be replaced with a polar/cylindrical coordinate sys-
tem using the storm center as its reference or origin.
This polar coordinate system changes how the observa-
tion density looks. When determining the spatial dif-
ference between two observations, one can compare the
radial distances from the center or in conjunction with
its angular differences. The radial distance from the
center allow the observations with no Cartesian neigh-
bors to be compared with other observations with a
similar distance to the center but in any quadrant of

2The center of circulation is the center, vortex, or eye of the
storm. The storm is said to revolve around this point

the TC. Adding the angular difference quadrant fea-
tures are more prevalent.

4 Result Analysis

As mentioned earlier, DBSCAN was implemented
with the option of three distance measures based on dif-
ferent coordinates systems. The three methods were:
FEuclidean, radial, and polar. For the radial and po-
lar methods, a center was selected based on the storm
track positions from NHC and corresponds to the date
and time of the analysis. As mentioned in Section 3.2,
the wind direction is rotated as the points are looked at
around the storm. Therefore, the wind direction was
not considered when comparing the radial distances
from the center. Due to the idealized symmetrical na-
ture using the radial distance method, spikes in wind
speeds could be detected and removed as noise. Simi-
larly, when performing the polar distance method, us-
ing the angular distance makes it possible to remove
the observations with erroneous wind directions. For
all of the mentioned methods, the maximum difference
values (Eps values) used by DBSCAN were taken based
on the discussions with the meteorologist and special-
ist.

In order to check the validity of the results, each dis-
tance measure was applied to a series of TC data sets.
The selected data sets are all from the 2004 Atlantic
hurricane season. They include Hurricane Frances on
September 4" at 2230UTC, Hurricane Ivan on Septem-
ber 16" at 0130UTC, and two cases from Hurricane
Jeanne, one on September 17" at 0730UTC and the
other on September 26" at 0130UTC. The times se-
lected correspond to the times of available operational
analyses for comparison. These operational analyses
were done in real-time and were quality controlled by
hurricane meteorologists. These operational analyses
values were considered to be the “truth.”

The mean radii %error per quadrant are shown in
Table 1. These values were derived by taking the %er-
ror for each case and then averaging the values together
for each quadrant. The %error is used as a method to
normalize the results between individual cases. While
all hurricanes have a similar structure, they usually
have varying dimensions. The wind radii, as defined
by the NHC, are the maximum radius from the center,
where the winds of the denoted wind speeds can be
expected. The standard wind radii used by NHC are
64kt (hurricane force), 50kt, and 34kt (tropical storm
force).

As shown in the table, the errors match what are ex-
pected. What was not expected was that the results us-
ing the Euclidean distance with Cartesian coordinates



Table 1. Mean %error for wind radii in each quadrant (%error = |x-y|/y)

64kt Wind Radii 50kt Wind Radii 34kt Wind Radii
Measure NE ‘ SE ‘ SW ‘ NW | NE ‘ SE ‘ SW ‘ NW | NE ‘ SE ‘ SW ‘ NW
Operational | 0.55 | 0.28 | 0.16 | 0.67 | 0.31 | 0.25 | 0.36 | 0.60 | 0.23 | 0.15 | 0.32 | 0.20
Cartesian 0.67 | 0.32 | 0.31 | 0.24 | 0.36 | 0.20 | 0.42 | 0.45 | 0.29 | 0.20 | 0.40 | 0.21
Radial 0.17 | 0.23 | 0.15 | 0.14 | 0.10 | 0.21 | 0.18 | 0.16 | 0.33 | 0.60 | 0.12 | 0.06
Polar 0.15 | 0.22 | 0.13 | 0.15 | 0.36 | 0.40 | 0.20 | 0.21 | 0.52 | 0.66 | 0.11 | 0.54

had a higher %error on average than those not using
any clustering method for QC. Both the radial and po-
lar did fairly well, with the note that the polar method
performed fairly better closer to the center. It must be
noted that the further away from the center the winds
were, the less QC was necessary. However, more work
must be done to better handle the winds closer to the
center as can be seen in Figure 2 of the wind contours
from HSA. The darker region in the center, denoting
more wind contours, in all three methods seems to be
significantly larger than that of the operational analy-
sis. This could be a result of the rapidly changing wind
directions near the center of circulation, which would
explain the better handling near the center of the ra-
dial measure. As mentioned earlier, the radial measure
does not evaluate the wind direction.

5 Conclusion and Discussion

In this paper, the basic use of different distance
measures and coordinate systems for quality control-
ing TC observations has been discussed. As expected,
the resulting clusters and therefore the resulting noise
excluded due to the QC, varied based on the used
method. While closer to the center, the radial and the
polar methods outperformed the Euclidean-Cartesian
method. In addition, it was noticed that as the obser-
vations moved further away from the center, almost no
QC was needed. From the discussions with the mete-
orologists, this seems relatively true based on the time
spent manually QCing data on the perimeter of the
analysis domain.

Based on the results, there are several other tech-
niques that may be useful. One technique that may
help is to use a more precise distance measure based on
the polar coordinate system, the arc distance should be
evaluated against the polar method used here of tak-
ing the radial and angular differences. Another pos-
sible technique for handling the structure of the TC
may be to vary the way one looks at the wind val-
ues. Wind values are typically viewed in terms or
magnitude and direction, but can also be viewed as
vector components. This should not drastically change
the results. However, wind values can also be looked

(c¢) Radial

(d) Polar

Figure 2. HSA Wind contour plots

at in terms of the radial and tangential components.
This method may allow the simple Euclidean-Cartesian
method to take into account the cylindrical shape. An-
other topic for further study is to possibly dynamically
determine in which cases to use different distance mea-
sures. What is not accurately shown in the presented
results was that for TC events consisting of primarily
low winds (<50kt), the Euclidean-Cartesian method
outperformed both the radial and polar methods al-
most two-fold. Furthermore, it may be necessary to
use a combination of distance measures to properly QC
the TC data.
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