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ABSTRACT 
 

 

In order to enhance the precision in association rule 
mining, an extension is proposed to capture the uncertain 
item relationships in the data sets in this paper. Two 
sources of uncertainty are considered: the degree of 
individual item importance (multiplicity) and the degree 
of association among the items (inter-relationship). In 
many real-world applications, especially in a distributed 
environment, the data sets are generated and collected 
from different sources. Thus the inter-relationships 
among the items can vary and result in uncertain item 
relationships. The Dempster-Shafer (DS) evidential 
reasoning theory is applied to generate the association 
rules with the proposed support and confidence measures 
under uncertainty. These measures are defined under 
Shannon-like measure of total uncertainty. A numerical 
example based on market basket analysis is given with a 
comparison between our approach and the original 
association rule mining method. 
 
Keywords: Knowledge Discovery in Databases, 
Association Rule Mining, Evidence Theory, Uncertainty 
Reasoning, and Measure of Total Uncertainty. 
 
  

1. INTRODUCTION 
 

Association rule mining is one of the most widely 
applied algorithms in knowledge discovery in databases 
(KDD) or data mining [4][7][15][16]. Originally 
proposed by [2], its basic idea is to discover important 
and interesting associations among the data items such 
that the presence of some items in a transaction will 
imply the presence of other items in the same transaction. 
The outputs generated from the association rule mining 
are some rules, which pass the user-specified minimum 
support and confidence measures. The association rule 
mining is popularly applied to the problem of market 
basket analysis (MBA), where the data set is a collection 
of transaction records, each containing a list of items that 
customers purchase in a single transaction. 

Many extensions to the original association rule 
mining [2] have been proposed to deal with some of the 
original algorithm’s drawbacks. Examples include the use 
of the interestingness measure to prune down the number 
of rules [3][11], mining the generalized association rules 
involving hierarchical data set [17] and generalized 
affinity-based association rule mining [15][16]. Most of 
these extensions including the original algorithm make an 
assumption that the data set under consideration is precise 
or consistent and contain no ambiguity. However, for 
many real-world applications, the data set is usually far 
from being perfect. Data sets commonly contain some 
uncertainty, particularly incompleteness and 
inconsistency. One example is a distributed information 
environment, where the data sets are generated and 
collected from different sources, and each source may 
have different constraints. This can lead to different inter-
relationships among the items, thus imposing on the data 
set.  

As suggested in [5], uncertainty can be classified into 
the following categories: 
• Incompleteness: this is due to the absence of the 

value. 
• Imprecision: this arises from a value that cannot be 

measured with suitable precision. 
• Imperfection: this is due to the lack of information 

relative to the state of the world, and may be due to 
subjective errors on the part of some observer. 

• Randomness: this arises due to the inability to 
differentiate among the items. 

• Vagueness: this can be considered as a subcategory 
of imprecision. 

• Inconsistency: this describes a situation where a 
variable has two or more conflicting values. 

• Ignorance: this arises due to lack of knowledge. 
 

We consider two sources of uncertainty, which were 
first proposed and realized in [10]. The first is the degree 
of individual item importance, or item multiplicity. The 
item multiplicity can be classified as randomness, since 



the number of items occurring in one transaction can be 
different from other transactions. We allow the 
multiplicity of items to affect the outcome of the 
association rule mining process. The second is the degree 
of inter-relationships among the items. Degree of inter-
relationships can be considered as vagueness and 
inconsistency, since their values can be set differently 
due to different data sources. In this paper, such 
differentiation in the data sets is provided, thus making 
the association rule mining process more generalized. 

  To deal with the above uncertainty in the data sets, 
the Dempster-Shafer (DS) evidential reasoning theory 
[6][13] is  applied in the association rule mining process. 
Unlike some other approaches in handling uncertainty in 
data sets such as fuzzy set and possibility theory [18], 
evidence theory allows us to model and construct the 
itemsets easily via its basic probability assignment (bpa) 
or mass function (m). Using the bpa, the item inter-
relationships and multiplicity can be conveniently 
captured within the framework [10] as shown in the next 
section. We propose the support and confidence measures 
under uncertainty using a Shannon-like measure of total 
uncertainty so that the degree of total uncertainty hidden 
in the data sets under consideration is captured. 

The rest of the paper is organized as follows. In the 
next section, we discuss the basic notions in evidence 
theory such as belief, plausibility, and bpa functions as 
being applied to the association rule mining process. In 
Section 3, the Shannon-like measure of total uncertainty 
based on the belief and plausibility functions in the 
evidence theory is presented along with the proposed 
support and confidence measures for the association rule 
mining. An example of MBA problem is used to illustrate 
our framework in Section 2 and Section 3. The paper is 
concluded in Section 4. 
 
 

2. APPLYING EVIDENCE THEORY TO 
ASSOCIATION RULE MINING 

 
Dempster-Shafer (DS) theory [6][13] aims to provide 

a theory of partial belief. It attempts to overcome the 
representational deficiencies within the probability (or 
Bayesian) theory as well as to provide some mechanisms 
for making inferences from the available evidence. The 
frame of discernment (FOD) Θ is the set of mutually 
exclusive and exhaustive propositions of interest. Defined 
on the set of all subsets of Θ is the basic probability 
assignment (bpa) or the mass function (m) that associates 
with every subset of Θ a degree of belief that lies within 
the interval [0,1]. The bpa function can be 
mathematically defined as follows. 
 
Definition 1 (Basic Probability Assignment): A real 
positive function m given by m: 2Θ → [0,1] is a basic 
probability assignment for the FOD Θ if it satisfies the 
following conditions: 
 

1.   m(∅) = 0. 
2. ∑

Θ⊆

=
A

Am 1)( . 

 
The quantity m(A)  is called the basic probability number 
(or value) of A.  

The propositions in the FOD Θ that possess non-zero 
bpas are called the focal elements of Θ and are denoted 
by 

F(Θ) = { A ⊆ Θ | m(A) > 0}. 
 
For a given FOD Θ, the triplet {Θ, F, m} is referred to as 
its body of evidence (BOE). 

The quantity m(A) measures the support assigned to 
proposition A only and to no smaller subset of A. 
However, the belief assigned to any proposition is also 
committed to any other proposition it implies. In other 
words, the belief A must take into account the supports 
for all proper subsets of A as well. 
 
Definition 2 (Belief): Given a BOE {Θ, F, m}, the belief 
assigned to A ⊆ Θ is Bel: 2Θ → [0,1], where 
 

∑
⊆

=
AB

BmABel )()( . 

 
Thus, Bel(A) represents the total support that can move 
into A without any ambiguity.  
 
Definition 3 (Doubt): Given a BOE  {Θ, F, m}, the 
doubt regarding A ⊆ Θ is Dou: 2Θ → [0,1], where 
 

)()( ABelADou = . 
 
The doubt can also be visualized as the collection of 
floating masses that cannot move into A with the 
acquisition of new information. This can be represented 
as,  

∑
=∩

=
φAB

BmABel )()( . 

 
Definition 4 (Plausibility): Given a BOE {Θ, F, m}, the 
plausibility of A ⊆ Θ is Pl: 2Θ → [0,1], where 
 

)(1)(1)( ABelADouAPl −=−= . 
 
Pl(A) indicates the extent to which one fails to doubt A, 
i.e., the extent to which one finds A to be plausible. The 
plausibility function can also be rewritten as follows: 
 

∑
≠∩

=
φAB

BmAPl )()( . 

 
Note that )()( ABelAPl ≥ , for any A ⊆ Θ. 



The definition of the uncertainty interval associated 
with A is denoted by Un(A) as shown below: 

 
)](),([)( APlABelAUn = . 

 
Applications of DS theory notions in association rule 

mining appear in [10]. For our purpose, we proceed as 
follows. 

We consider a set of items, I = {i1, i2, …, in}, where 
n is the number of items. Then I can be modeled as an 
FOD in the evidence theory. We also define a set of inter-
relationships on I (denoted by r) by using the basic 
probability assignment function. That is, r: 2I → [0,1] is a 
bpa for the FOD I which satisfies the following two 
conditions. 

 
1. r(∅) = 0. 
2. ∑

⊆

=
IA

Ar 1)( . 

 
Note that the bpa function r captures the importance of 
inter-relationships among the items as determined by the 
incoming source of the data set. Therefore, r can vary 
depending on the information or data source.  

As an example, we consider a MBA problem. For 
simplicity, we assume the same FOD, i.e., the same set of 
items for all data sets. Suppose we have transactions 
generated from two different sources: Store 1 and Store 2. 
Under the same FOD assumption, I1 = I2 = {dairy, snack, 
toiletry}. Table 1 shows the sets of inter-relationships 
among the items for both stores. As can be seen from 
Table 1, the values for each itemset can vary between 
Store 1 and Store 2, thus resulting in uncertain inter-
relationships among items as mentioned earlier. 
 
 

Itemsets Store 1 Store 2 

r (dairy) 0.1 0.2 

r (snack) 0.1 0.2 

r (toiletry) 0.3 0.2 

R (dairy, snack) 0.1 0.1 

r (dairy,toiletry) 0.2 0.1 

r (snack,toiletry) 0.2 0.1 

r (dairy,snack,toiletry) 0.0 0.1 

Sum 1.0 1.0 
 
Table 1: The sets of inter-relationships for Store 1 and 
Store 2. 
 

Suppose the data set from the two stores is as shown 
in Table 2. Each transaction in a single row contains the 
amounts of items that a customer purchased. For 
example, in the first transaction, a customer bought two 
dairy items and five snack items from Store 1. 

Next we apply the r-value set from Table 1 to the 
transactions in Table 2, thus generating another set of 
bpas (denoted by m) at the transaction level. Based on the 
original association rule mining approach [2], the support 
value for a multiple-itemset is determined from the co-
occurrence of all items in the itemset. For example, from 
Transaction 1 in Table 2, the support value for {dairy, 
snack} is equal to 1, since both dairy and toiletry 
occurred in the transaction; while the support value for 
{dairy, toiletry} is equal to 0, since dairy and toiletry did 
not co-occur in the transaction.  

In order to comply with the original association rule 
mining and to attain the item multiplicity, we propose the 
use of the minimum strategy to select the representative 
item whose value is the smallest (minimum) in the 
itemset. Take Transaction 1 in Table 2 as an example. 
The support value for {dairy, snack} itemset is equal to 
2, since the value of the dairy item is 2, which is smaller 
than the value 5 of the snack item, and the support value 
for {dairy, toiletry} itemset is equal to 0 since the value 0 
of the toiletry item is the minimum value. Using this 
minimum strategy, our approach complies with the 
original association rule mining when one of the items in 
the itemset is equal to zero, and it captures the 
multiplicity of the itemsets as well. 

 Using the minimum strategy described above, the 
bpa process at the transaction level involves the 
multiplication of the r-value with the representative item 
value (or amount) of each itemset. Therefore, the degree 
of item importance (multiplicity) is considered at this 
step. Then the m-value set is normalized by dividing by 
the sum of all m values. The normalization process is 
required to satisfy the second condition of Definition 1. 

 
 
Transaction No. Store dairy snack toiletry 

1 1 2 5 0 
2 1 2 1 1 
3 1 0 1 1 
4 1 1 1 1 
5 1 0 0 3 
6 1 2 3 0 
7 2 1 1 2 
8 2 3 2 0 
9 2 0 2 3 
10 2 1 2 4 
11 2 2 0 1 

 
Table 2: Data set collected from two different stores. 
 

The following example is to show how to generate 
the bpa set for a transaction at the transaction level from 
the bpa sets of the inter-relationships (as shown in Table 
1). We denote min(i1, i2, …, in) as the minimum function 
whose result is the mimimum value among the itemset 



{i1, i2, …, in}, where n is the number of items in the 
itemset. 
 
Example 1: Consider Transaction 1 from Table 2. The 
set of bpa values for this transaction can be calculated 
using the set of inter-relationships from Store 1 as shown 
below.  
 
m(dairy) = min(dairy) × 0.1 = 2 × 0.1 = 0.2; 
m(snack) = min(snack) × 0.1 = 5 × 0.1 = 0.5; 
m(toiletry) = min(toiletry) × 0.3 = 0 × 0.3 = 0; 
m(dairy,snack) = min(dairy,snack) × 0.1 = 2 × 0.1 = 0.2; 
m(dairy,toiletry) =  min(dairy,toiletry) × 0.2 = 0 × 0.2 =0; 
m(snack,toiletry) = min(snack,toiletry) × 0.2 = 0 × 0.2 =0; 
m(dairy,snack,toiletry) = min(dairy,snack,toiletry) × 0 = 0. 
 
Then, we normalize the above set of m-value by dividing 
by the sum of m-value. Note that the sum of the m-value 
set is 0.9. The final result of m-value is shown below. 
 

m(dairy) = 0.22; 
m(snack) = 0.56; 
m(toiletry) = 0; 
m(dairy,snack) = 0.22; 
m(dairy,toiletry) = 0; 
m(snack,toiletry) = 0; 

 m(dairy,snack,toiletry) = 0. 
 

Next, the set of uncertainty intervals [Bel(x), Pl(x)], 
where x is an itemset, can be constructed from the above 
m-value set using the belief and plausibility functions 
from Definitions 2 and 4, respectively. To comply with 
the original association rule mining, we only consider 
[Bel(x), Pl(x)] of the itemset whose m-value is greater 
than zero. We refer to this as the restricted uncertainty 
interval, which can be defined as follows. 

 



 =

=
∧

otherwisexPlxBel
xm

xUn
)],(),([

0)(               ],0 ,0[
)(  

 
Using the restricted uncertainty interval, the 

calculations from the above m-value set are shown below. 
∧

Un (dairy) = [0.22, 0.44] ; 
∧

Un (snack) = [0.56, 0.78] ; 
∧

Un (toiletry) = [0, 0] ; 
∧

Un (dairy,snack) = [1, 1] ; 
∧

Un (dairy,toiletry) = [0, 0] ; 
∧

Un (snack,toiletry) = [0, 0] ; 

 
∧

Un (dairy,snack,toiletry) = [0, 0].  
 

In the next section, the support and confidence 
measures of the association rule mining are defined based 
on the measure of total uncertainty. 

3. SUPPORT AND CONFIDENCE BASED ON 
THE MEASURES OF TOTAL UNCERTAINTY 

 
The concepts of uncertainty and information are 

closely related. A measure of the uncertainty, which 
prevails before the experiment is accomplished, can be 
considered as a measure of the information expected from 
an experiment. In this paper, we use the terms “measure 
of the uncertainty” and “measure of the information” as 
having interchangeable meanings. One of the most well 
established methods of measuring the information is the 
classical Shannon measure (or information entropy) [14]. 
The original Shannon measure applies to uncertainty 
formalized in terms of a probability distribution p = {p(x) 
| x ∈ X}, where p is defined on a s-algebra of measurable 
subsets of the FOD. 

To measure the amount of uncertainty under the 
probability distribution p, the following function was 
proposed. 

∑
∈

−=
Xx

xpxppS )(log)()( 2
.                  Eq. (1) 

 
The above function S yields the measurement unit in bit 
and also has a well-established axiomatic basis [1][12]. 

In an attempt to measure the total uncertainty or 
information derived from the evidence theory, many 
measures based on the Shannon function have been 
proposed and are referred to as Shannon-like (SL) 
measures. Comparisons and drawbacks of the previous 
proposed measures are given in [8] and [9]. 

In this paper, we consider the SL measure of 
uncertainty suggested in [9]. This SL measure adopts the 
function S from Eq. (1) to define the total uncertainty 

based on the restricted uncertainty interval )(xUn
∧

 as 
shown below.  

∑
∈ +

−=
Xx xPlxPl

xBelxBel

c
xSL

})]({log})({
})({log})({[1

)(
2

2 ,          

Eq. (2) 
 
where ∑

∈

+=
Xx

xPlxBelc })]({})({[ , and X is the FOD 

under consideration. For the uncertainty interval with 
Bel=0 and Pl=0, we assume that the SL value is equal to 
zero (denoting the minimum value). It can be shown that 
the maximum value of the above SL measure occurs 
when the Bel and Pl values of the itemset are equal 
among all transactions (which corresponds to a uniform 
distribution over all transactions). Given n transactions, 
the maximum SL value can be derived as shown below. 
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Therefore, we  have 







−=

n
SL

1
log 2max

.            Eq. (3) 

 
We now give the definitions of the support and 

confidence measures for the association rule mining 
based on the above SL measure. These measures are 
adopted from the initial suggestion given in [10]. 

 

∑=⇒
k

YXSLYXSupport ),( )( ,          Eq. (4)

   

∑=⇒
k XSL

YXSLYXConfidence
)( 
),( )(  ,              Eq. (5) 

    
where the summation is  over all k  transactions that have 
an implication on the itemsets. The proposed support and 
confidence defined under the SL measure are different 
from those of the original association rule mining, where 
the calculation depends on the number of transactions 
that the items co-occur. In our approach, we use the SLmax 
as the divisor to calculate the percentage value of the 
support measure, whereas in the original association rule 
mining, the divisor is the number of transactions in the 
data set. 

Now we give an example of generating the 
association rules based on the proposed support and 
confidence measures. Using the inter-relationship sets 
and the transaction records from Table 1 and Table 2, 
respectively, the sets  of m-value and restricted 

uncertainty intervals )(xUn
∧

 can be generated using the 
same method described in Example 1. 

Using the support measure from Eq. (4), the itemsets 
with the support values are shown in Table 3. As a 
comparison, the support values based on the original 
association rule mining method are also shown in the 
same table. Note that the support values for the original 
association rule mining are calculated based on the 
number of transactions that the item(s) in the itemset co-
occur without considering the multiplicity and the inter-
relationships among the items. As an example, we 
consider the itemset, i(dairy,snack). Using the original 
association rule mining method, the support value for 
i(dairy,snack) is 63.6%. This value is calculated by 
dividing the number of transactions where dairy and 
snack co-occurred, by the total number of transactions, 
i.e., (7/11) x 100%. Using our proposed approach, the 
support value can be calculated as follows. 
 

∑
=

=⇒
11

),( )( 
k

snackdairySLsnackdairySupport  

∑
= +

−=
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The result from the above calculation is then divided by 
SLmax whose value is 3.46 by using Eq. (3) where n=11, 
and multiplied by 100%. This final result is equal to 
78.1%. 

To generate the rules, user needs to specify the 
minimum support and confidence values. Suppose the 
support value is 70%. This means by using our approach, 
5 of the above itemsets pass this user-specified support 
value as shown below.  

 
i(snack),  
i(toiletry), 
i(dairy), 
i(dairy, snack), and 
i(snack, toiletry). 

 
We only consider the rules where both pre-condition 

and post-condition are non-empty, i.e., they contain at 
least one item. Using the original association rule mining 
method with the support value of 70% will only generate 
the itemsets with singleton. Therefore, there is no rule 
generated under our non-empty condition assumption. 
 

itemset 
Original 
approach 

DS-theory 
approach 

i (dairy) 72.7% 82.1% 

i (snack) 81.8% 87.7% 

i (toiletry) 72.7% 84.0% 

i (dairy,snack) 63.6% 78.1% 

i (dairy,toiletry) 45.5% 66.5% 

i (snack,toiletry) 54.5% 74.0% 

i (dairy,snack,toiletry) 36.4% 28.9% 

 
Table 3: The support values for the itemsets based on 
the original association rule mining method and our 
proposed DS-theory approach. 
 

One advantage of our approach over the original 
association rule mining method is that the repeated 
scanning of the database to generate the itemsets is no 
longer necessary since both the item multiplicity and item 
inter-relationships are embedded in a single bpa. 

Then the following rules can be generated from the 
above itemsets. 

dairy ⇒ snack (95.1%); 
snack ⇒ dairy (89.0%); 
snack ⇒ toiletry (84.4%); and 
toiletry ⇒ snack (88.1%); 
 

where the confidence measure for each rule is given in 
the parentheses on the right hand side using Eq. (5). For 
example, the confidence measure for the rule “toiletry ⇒ 
snack” is 88.1%. 

Suppose that the user-specified confidence value is 
90%, then there is only one resulting rule as shown.  



 
dairy ⇒ snack,  
with support = 78.1% and confidence = 95.1%. 

 
Note that the support and confidence measures can be set 
differently according to the various applications. 
 

4. CONCLUSION 
 

We suggested an alternative extension to the original 
association rule mining algorithm by providing the 
capability to handle the data sets with uncertainty. The 
evidence theory is applied to handle the uncertainty 
derived from the item multiplicity and item inter-
relationships. We proposed a method of constructing the 
bpa in the transaction level from the bpa in the inter-
relationship level. Unlike the original association rule 
mining method that requires the repeated scanning of the 
database to generate the itemsets and does not capture the 
multiplicity of an item, both the item multiplicity and 
item inter-relationships are embedded in a single bpa so 
that no repeated database scanning is required in the 
proposed framework. In addition, the support and 
confidence measures were defined using a Shannon-like 
measure of total uncertainty for the proposed framework. 
A numerical example of the market basket analysis 
(MBA) problem was given to show the result of 
association rule mining from data sets with uncertainty. A 
comparison with the original association rule mining was 
also given. 
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